cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A175752 Numbers with 45 divisors.

Original entry on oeis.org

3600, 7056, 8100, 15876, 17424, 19600, 20736, 22500, 24336, 39204, 41616, 48400, 51984, 54756, 67600, 76176, 86436, 93636, 94864, 99225, 104976, 115600, 116964, 121104, 122500, 132496, 138384, 144400, 147456, 160000, 171396, 197136
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^44, p^14*q^2, p^8*q^4 (squares of A189988) and p^4*q^2*r^2 (A179746), where p, q, and r are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n)) = 45.
Sum_{n>=1} 1/a(n) = (P(2)^2*P(4) - P(4)^2)/2 - P(2)*P(6) + P(8) + P(2)*P(14) - P(16) + P(4)*P(8) - P(12) + P(44) = 0.00133023..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A175753 Numbers with 46 divisors.

Original entry on oeis.org

12582912, 20971520, 29360128, 46137344, 54525952, 71303168, 79691776, 96468992, 121634816, 130023424, 155189248, 171966464, 180355072, 197132288, 222298112, 247463936, 255852544, 281018368, 297795584, 306184192, 331350016, 348127232, 373293056, 406847488
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^45 and p^22*q^1, where p and q are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=46.

Extensions

Extended by T. D. Noe, May 08 2011

A274813 Numbers n such that n and n+1 both have 44 divisors.

Original entry on oeis.org

701443071, 1064240127, 1112542208, 2515428351, 2563730432, 3531189248, 4329413631, 4813143039, 5538737151, 5901534207, 6627128319, 6868993023, 7159159808, 7642889216, 7957384191, 8803910655, 10134166527, 11270859776, 13447642112
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A175751.

Programs

  • PARI
    is(n)=numdiv(n)==44 && numdiv(n+1)==44
Showing 1-3 of 3 results.