cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336595 Numbers whose number of divisors is divisible by 5.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200, 1232
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

The asymptotic density of this sequence is 1 - zeta(5)/zeta(4) = 0.0419426259... (Sathe, 1945).

Examples

			16 is a term since A000005(16) = 5 is divisible by 5.
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 63.

Crossrefs

Programs

  • Maple
    q:= n-> is(irem(numtheory[tau](n), 5)=0):
    select(q, [$1..1300])[];  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    Select[Range[1300], Divisible[DivisorSigma[0, #], 5] &]

Formula

A030514 UNION A030628 \ {1} UNION A030633 UNION A030638 UNION A137488 UNION A137493 UNION A175745 UNION A175749 UNION A175752 UNION A175756 UNION ... - R. J. Mathar, May 05 2023

A175753 Numbers with 46 divisors.

Original entry on oeis.org

12582912, 20971520, 29360128, 46137344, 54525952, 71303168, 79691776, 96468992, 121634816, 130023424, 155189248, 171966464, 180355072, 197132288, 222298112, 247463936, 255852544, 281018368, 297795584, 306184192, 331350016, 348127232, 373293056, 406847488
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^45 and p^22*q^1, where p and q are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=46.

Extensions

Extended by T. D. Noe, May 08 2011

A175754 Numbers with 48 divisors.

Original entry on oeis.org

2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5280, 5400, 5460, 5544, 5760, 5880, 5940, 6048, 6120, 6240, 6552, 6600, 6840, 6930, 7020, 7140, 7392, 7800, 7980, 8064, 8160, 8190, 8280, 8316, 8568, 8580, 8736, 9000, 9120, 9180, 9450, 9504, 9576, 9600
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^47, p^23*q^1, p^15*q^2, p^11*q^3, p^7*q^5, p^3*q^3*r^2, p^7*q^2*r^1, p^11*q^1*r^1, p^5*q^3*r^1, p^5*q^1*r^1*s^1, p^3*q^2*r^1*s^1 and p^2*q^1*r^1*s^1*t^1, where p, q, r, s and t are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=48.
Showing 1-3 of 3 results.