cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175755 Numbers with 49 divisors.

Original entry on oeis.org

46656, 1000000, 7529536, 11390625, 85766121, 113379904, 308915776, 1291467969, 1544804416, 1838265625, 3010936384, 3518743761, 9474296896, 17596287801, 27680640625, 34296447249, 38068692544, 56800235584, 75418890625, 107918163081, 164206490176, 208422380089
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^48 and p^6*q^6, where p and q are distinct primes.

Examples

			a(1) = A114334(49); a(2) = A159765(49).
		

Crossrefs

Programs

  • Haskell
    a175755 n = a175755_list !! (n-1)
    a175755_list = m (map (^ 48) a000040_list) (map (^ 6) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    Select[Range[100000000],DivisorSigma[0,#]==48&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
  • PARI
    is(n)=numdiv(n)==49 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A175755(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,6)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(integer_nthroot(x,48)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 49.
Sum_{n>=1} 1/a(n) = (P(6)^2 - P(12))/2 + P(48) = 0.0000226806..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

Extensions

Extended by T. D. Noe, May 08 2011