cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175899 a(n) = a(n-2) + a(n-3) + 2*a(n-4), with a(1) = 0, a(2) = 2, a(3) = 3, a(4) = 10.

Original entry on oeis.org

0, 2, 3, 10, 5, 17, 21, 42, 48, 97, 132, 229, 325, 555, 818, 1338, 2023, 3266, 4997, 7965, 12309, 19494, 30268, 47733, 74380, 116989, 182649, 286835, 448398, 703462, 1100531, 1725530, 2700789, 4232985, 6627381, 10384834, 16261944, 25478185, 39901540, 62509797
Offset: 1

Views

Author

John W. Layman, Oct 11 2010

Keywords

Comments

According to the reference, p divides a(p) for every prime p.

Crossrefs

Programs

  • Haskell
    a175899 n = a175899_list !! (n-1)
    a175899_list = 0 : 2 : 3 : 10 : zipWith (+) (map (* 2) a175899_list)
       (zipWith (+) (tail a175899_list) (drop 2 a175899_list))
    -- Reinhard Zumkeller, Mar 23 2012
  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|1|0>>^n.
            <<4,0,2,3>>)[1, 1]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 21 2011
  • Mathematica
    LinearRecurrence[{0,1,1,2},{0,2,3,10},40] (* Harvey P. Dale, Jul 24 2011 *)
  • Maxima
    a(n):=n*sum(sum(binomial(j,n-4*k+2*j)*2^(k-j)*binomial(k,j), j,0,k)/k, k,1,n/2); /* Vladimir Kruchinin, Oct 21 2011 */
    

Formula

G.f.: x*(-2*x-3*x^2-8*x^3)/(-1+x^2+x^3+2*x^4). - Harvey P. Dale, Jul 24 2011
a(n) = n*sum(k=1..n/2, sum(j=0..k, binomial(j,n-4*k+2*j)*2^(k-j) * binomial(k,j))/k), n>0. - Vladimir Kruchinin, Oct 21 2011