cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176015 Decimal expansion of (5 + 3*sqrt(5))/10.

Original entry on oeis.org

1, 1, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2, 2, 5, 1, 3, 6, 3, 4, 6, 8, 2, 4, 9, 0, 8, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (5 + 3*sqrt(5))/10 is A010686.
The horizontal distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the vertical distance is A244847). - Amiram Eldar, May 18 2021

Examples

			(5 + 3*sqrt(5))/10 = 1.17082039324993690892...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.

Crossrefs

Cf. A000032, A000045, A001622, A002163 (decimal expansion of sqrt(5)), A010686 (repeat 1, 5), A090550, A134976.
Cf. A010499 (decimal expansion of 3*sqrt(5)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=(5+3*Sqrt(5))/10; Reverse(Intseq(Floor(10^104*n))); // Arkadiusz Wesolowski, Jan 07 2018
    
  • Maple
    Digits := 1000:  (5+3*sqrt(5.0))/10; # Muniru A Asiru, Jan 22 2018
  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/10, 10, 1001][[1]] (* Georg Fischer, Apr 02 2020 *)
  • PARI
    (5 + 3*sqrt(5))/10 \\ Michel Marcus, Apr 20 2020

Formula

Equals (A134976 + 8)/10. - R. J. Mathar, Apr 12 2010
From Arkadiusz Wesolowski, Jan 07 2018: (Start)
Equals A001622^2 / sqrt(5).
Equals lim_{n -> infinity} A000045(n+2) / A001622^n. (End)
Equals 1/A090550 + 1. - Michel Marcus, Apr 20 2020
Minimal polynomial is 5x^2 - 5x - 1 (this number is an algebraic number but not an algebraic integer). - Alonso del Arte, Apr 20 2020
Equals lim_{k->oo} Fibonacci(k+2)/Lucas(k). - Amiram Eldar, Feb 06 2022