A176033 Numbers k such that 2^(2k-1) == 2 (mod 2k) and such that 2^(k-1) != 1 (mod k).
15, 85, 91, 435, 451, 703, 1247, 1271, 1581, 1695, 1891, 2071, 3133, 3367, 3683, 4795, 4859, 5551, 6643, 8695, 9061, 9131, 9211, 9605, 9919, 12403, 13019, 14351, 14701, 15051, 15211, 16021, 16471, 19669, 20191, 20485, 24727, 25351, 26335, 26599, 27511, 28645
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
select(n -> 2 &^ (2*n-1) - 2 mod (2*n) = 0 and 2 &^ (n-1) -1 mod n <> 0, [seq(n,n=3..10^5,2)]); # Robert Israel, Nov 06 2017
-
Mathematica
Select[Range[30000],PowerMod[2,2#-1,2#]==2&&PowerMod[2,#-1,#]!=1&] (* Harvey P. Dale, Jul 06 2025 *)
-
PARI
alist(m) = {for (n=1, m, v = 2^(2*n-1); if ((v % (2*n) == 2), k = 2^(n-1) % n; if (k > 1, print1(n, ", "););););} \\ Michel Marcus, Jan 24 2013
Extensions
More terms from Michel Marcus, Jan 24 2013
Comments