cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A041537 Denominators of continued fraction convergents to sqrt(285).

Original entry on oeis.org

1, 1, 8, 17, 127, 144, 4735, 4879, 38888, 82655, 617473, 700128, 23021569, 23721697, 189073448, 401868593, 3002153599, 3404022192, 111930863743, 115334885935, 919275065288, 1953885016511, 14596470180865, 16550355197376, 544207836496897, 560758191694273
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,8,17,127,144,4735,4879,38888,82655, 617473,700128]; [n le 12 select I[n] else 4862*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 19 2013
  • Mathematica
    Denominator[Convergents[Sqrt[285], 30]] (* Harvey P. Dale, Nov 08 2013 *)
    CoefficientList[Series[-(x^10 - x^9 + 8 x^8 - 17 x^7 + 127 x^6 - 144 x^5 - 127 x^4 - 17 x^3 - 8 x^2 - x - 1)/((x^4 - 17 x^2 + 1) (x^8 + 17 x^6 + 288 x^4 + 17 x^2 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 19 2013 *)

Formula

G.f.: -(x^10 -x^9 +8*x^8 -17*x^7 +127*x^6 -144*x^5 -127*x^4 -17*x^3 -8*x^2 -x -1) / ((x^4 -17*x^2 +1)*(x^8 +17*x^6 +288*x^4 +17*x^2 +1)). - Colin Barker, Nov 18 2013
a(n) = 4862*a(n-6) - a(n-12) for n>11. - Vincenzo Librandi, Dec 19 2013

Extensions

More terms from Colin Barker, Nov 18 2013

A178148 Decimal expansion of (243+17*sqrt(285))/402.

Original entry on oeis.org

1, 3, 1, 8, 3, 9, 0, 6, 2, 5, 0, 6, 0, 3, 9, 8, 6, 2, 4, 6, 5, 9, 1, 7, 1, 9, 4, 0, 2, 0, 3, 6, 7, 1, 3, 1, 7, 9, 3, 6, 3, 7, 8, 3, 8, 7, 2, 6, 2, 7, 4, 2, 5, 8, 0, 0, 8, 7, 1, 8, 0, 7, 5, 4, 6, 6, 3, 8, 1, 6, 2, 5, 5, 1, 1, 2, 0, 9, 6, 3, 6, 7, 7, 9, 0, 0, 3, 0, 7, 6, 7, 5, 7, 3, 7, 2, 1, 6, 4, 2, 5, 1, 8, 5, 8
Offset: 1

Views

Author

Klaus Brockhaus, May 21 2010

Keywords

Comments

Continued fraction expansion of (243+17*sqrt(285))/402 is A131712.

Examples

			(243+17*sqrt(285))/402 = 1.31839062506039862465...
		

Crossrefs

Cf. A176104 (decimal expansion of sqrt(285)), A131712 (repeat 1, 3, 7, 9).

A176103 Decimal expansion of (15+sqrt(285))/10.

Original entry on oeis.org

3, 1, 8, 8, 1, 9, 4, 3, 0, 1, 6, 1, 3, 4, 1, 3, 2, 1, 8, 3, 1, 1, 6, 8, 8, 9, 4, 0, 9, 5, 2, 2, 1, 0, 9, 9, 8, 8, 8, 4, 8, 4, 7, 7, 1, 5, 7, 6, 2, 4, 8, 5, 3, 9, 5, 2, 6, 4, 9, 8, 0, 3, 7, 2, 7, 9, 3, 2, 5, 9, 6, 1, 5, 0, 2, 9, 7, 8, 0, 8, 2, 2, 6, 5, 6, 4, 2, 5, 6, 9, 7, 4, 3, 9, 0, 3, 5, 8, 8, 4, 0, 7, 3, 3, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 10 2010

Keywords

Comments

Continued fraction expansion of (15+sqrt(285))/10 is A010703.

Examples

			(15+sqrt(285))/10 = 3.18819430161341321831...
		

Crossrefs

Cf. A176104 (decimal expansion of sqrt(285)), A010703 (repeat 3, 5).

Programs

  • Mathematica
    RealDigits[(15+Sqrt[285])/10,10,120][[1]] (* Harvey P. Dale, Aug 04 2020 *)

A176318 Decimal expansion of (15 + sqrt(285))/6.

Original entry on oeis.org

5, 3, 1, 3, 6, 5, 7, 1, 6, 9, 3, 5, 5, 6, 8, 8, 6, 9, 7, 1, 8, 6, 1, 4, 8, 2, 3, 4, 9, 2, 0, 3, 5, 1, 6, 6, 4, 8, 0, 8, 0, 7, 9, 5, 2, 6, 2, 7, 0, 8, 0, 8, 9, 9, 2, 1, 0, 8, 3, 0, 0, 6, 2, 1, 3, 2, 2, 0, 9, 9, 3, 5, 8, 3, 8, 2, 9, 6, 8, 0, 3, 7, 7, 6, 0, 7, 0, 9, 4, 9, 5, 7, 3, 1, 7, 2, 6, 4, 7, 3, 4, 5, 5, 6, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (15+sqrt(285))/6 is A010703 preceded by 5.

Examples

			(15+sqrt(285))/6 = 5.31365716935568869718...
		

Crossrefs

Cf. A176104 (decimal expansion of sqrt(285)), A010703 (repeat 3, 5).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); (15 + Sqrt(285))/6; // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( (15+sqrt(285))/6, 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[(15+Sqrt[285])/6,10,120][[1]] (* Harvey P. Dale, May 07 2017 *)
  • PARI
    default(realprecision, 120); (15+sqrt(285))/6 \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx((15+sqrt(285))/6, digits=120) # G. C. Greubel, Nov 26 2019
Showing 1-4 of 4 results.