cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176138 Primes p of the form prime(n+1)^3+prime(n)^3-1.

Original entry on oeis.org

151, 467, 3527, 7109, 183329, 432359, 2123027, 2317769, 4296473, 8988209, 14156927, 20483497, 27649439, 43441973, 62519309, 95699141, 127051973, 148178519, 161245727, 201100409, 242622269, 301396087, 322007743, 432003599
Offset: 1

Views

Author

Keywords

Comments

5^3+3^3-1=151,...

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n+1]^3+Prime[n]^3-1,{n,7!}],PrimeQ[ # ]&]
    Select[Total[#]-1&/@Partition[Prime[Range[150]]^3,2,1],PrimeQ] (* Harvey P. Dale, Nov 06 2019 *)

A176139 Primes of the form prime(n+1)^3+prime(n)^3+1.

Original entry on oeis.org

3529, 54181, 148429, 354257, 2520073, 11665081, 14156929, 15525973, 22786651, 26301257, 35166041, 39367621, 44853229, 62519311, 110621827, 132899131, 141977989, 148178521, 161245729, 177457157, 259135757, 615109951, 648551359
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n+1]^3+Prime[n]^3+1,{n,6!}],PrimeQ[ # ]&]
    Select[Total/@Partition[Prime[Range[150]]^3,2,1]+1,PrimeQ] (* Harvey P. Dale, Aug 04 2016 *)
  • PARI
    p=2;forprime(q=3,1e4,if(isprime(t=p^3+q^3+1),print1(t", "));p=q) \\ Charles R Greathouse IV, Apr 15 2012

A229496 Primes p of the form prime(n+1)^2-prime(n)^2+1.

Original entry on oeis.org

17, 73, 73, 313, 409, 313, 601, 673, 241, 769, 1033, 1489, 409, 433, 3361, 1033, 1609, 601, 1321, 2113, 769, 5209, 1801, 2833, 3049, 3121, 1129, 2473, 1249, 2521, 6841, 4273, 4441, 4513, 3049, 6481, 8521, 5233, 3529, 3673, 11353, 6073, 2089, 6529, 6793, 2281, 7321
Offset: 1

Views

Author

K. D. Bajpai, Sep 25 2013

Keywords

Examples

			a(1)=17:  prime(2+1)^2-prime(2)^2+1= 17,  which is prime.
a(6)=313:  prime(12+1)^2-prime(12)^2+1= 313,  which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,c,d; a:=ithprime(n+1)^2-ithprime(n)^2+1;if isprime(a) then RETURN(a): fi;end:seq(KD(),n=1..500);
  • Mathematica
    Select[Table[Prime[n + 1]^2 - Prime[n]^2 + 1, {n, 10^3}], PrimeQ[#] &]
    Select[#[[2]]-#[[1]]+1&/@Partition[Prime[Range[200]]^2,2,1],PrimeQ] (* Harvey P. Dale, May 21 2021 *)
  • PARI
    for(n=1,10^3,if(ispseudoprime(k=prime(n+1)^2-prime(n)^2+1),print1(k", ")))
Showing 1-3 of 3 results.