A176137 Number of partitions of n into distinct Catalan numbers, cf. A000108.
1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
56 = 42+14 = A000108(5)+A000108(4), all other sums of distinct Catalan numbers are not equal 56, therefore a(56)=1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
nmax = 104; A197433 = CoefficientList[(1/(1 - x))*Sum[ CatalanNumber[k + 1]*x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, nmax] // Ceiling}] + O[x]^nmax, x]; a[n_] := Boole[MemberQ[A197433, n]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 18 2021, after Ilya Gutkovskiy in A197433 *)
-
Scheme
(define (A176137 n) (if (zero? n) 1 (- (A244230 (+ n 1)) (A244230 n)))) ;; Antti Karttunen, Jun 25 2014
Formula
a(n) = f(n,1,1) with f(m,k,c) = if c>m then 0^m else f(m-c,k+1,c') + f(m,k+1,c') where c'=2*c*(2*k+1)/(k+2).
Comments