cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176145 a(n) = n*(n-3)*(n^2-7*n+14)/8.

Original entry on oeis.org

0, 1, 5, 18, 49, 110, 216, 385, 638, 999, 1495, 2156, 3015, 4108, 5474, 7155, 9196, 11645, 14553, 17974, 21965, 26586, 31900, 37973, 44874, 52675, 61451, 71280, 82243, 94424, 107910, 122791, 139160, 157113, 176749, 198170, 221481, 246790, 274208, 303849
Offset: 3

Views

Author

Michel Lagneau, Apr 10 2010

Keywords

Comments

Number of points of intersection of diagonals of a general convex n-polygon. (both inside and outside the polygon).
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon (A080956). The number of points (inside or outside), distinct of tops, where these diagonals intersect is : (1/2)( n(n-3)/2)(n(n-3)/2 - 2(n-4) -1) = n(n-3)(n^2 - 7n + 14) / 8.

Examples

			For n=3, a(3) = 0 (no diagonals in triangle),
For n=4, a(4) = 1 (2 diagonals => 1 point of intersection),
For n=5, a(5) = 5 (5 diagonals => 5 points of intersection),
For n=6, a(6) = 18 (9 diagonals => 18 points of intersection).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.

Crossrefs

Programs

  • Magma
    [n*(n-3)*(n^2 - 7*n + 14) / 8: n in [3..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    for n from 3 to 50 do: x:=n*(n-3)*(n^2 - 7*n +14)/8 : print(x):od:
  • Mathematica
    Table[n*(n - 3)*(n^2 - 7*n + 14)/8, {n, 3, 42}] (* Bobby Milazzo, Jun 24 2013 *)
    Drop[CoefficientList[Series[x^4(1+3x^2-x^3)/(1-x)^5,{x,0,50}],x],3] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,18,49},50] (* Harvey P. Dale, Mar 14 2022 *)
  • PARI
    vector(100,n,(n+2)*(n-1)*(n^2-3*n+4)/8) \\ Derek Orr, Jan 21 2015

Formula

G.f.: x^4*(1+3*x^2-x^3)/(1-x)^5. [Colin Barker, Jan 31 2012]
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) + a(n-5), with a(3)= 0, a(4)= 1, a(5)=5, a(6)= 18, a(7) = 49. [Bobby Milazzo, Jun 24 2013]
a(n) = Sum_{k=(n-3)..(n-2)*(n-3)/2} k. - J. M. Bergot, Jan 21 2015

Extensions

Edited by N. J. A. Sloane, Apr 19 2010