A176156 Regular triangle, T(n, k) = f(n, k) - f(n, 0) + 1, where f(n, k) = Sum_{j=0..k} (-1)^j*StirlingS2(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} (-1)^j*StirlingS2(n, n-j)*binomial(n, j), read by rows.
1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 25, 67, 25, 1, 1, 51, 281, 281, 51, 1, 1, 91, 646, 1036, 646, 91, 1, 1, 148, -1217, -12536, -12536, -1217, 148, 1, 1, 225, -31079, -287223, -548785, -287223, -31079, 225, 1, 1, 325, -342899, -3906899, -11000741, -11000741, -3906899, -342899, 325, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 10, 10, 1; 1, 25, 67, 25, 1; 1, 51, 281, 281, 51, 1; 1, 91, 646, 1036, 646, 91, 1; 1, 148, -1217, -12536, -12536, -1217, 148, 1; 1, 225, -31079, -287223, -548785, -287223, -31079, 225, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
f:= function(n,k) return Sum([0..k], j-> Stirling1(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> Stirling1(n, n-j)*Binomial(n,j)); end; Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n,0)+1 ))); # G. C. Greubel, Nov 26 2019
-
Magma
f:= func< n,k | (&+[(-1)^j*StirlingFirst(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[(-1)^j*StirlingFirst(n,n-j)*Binomial(n,j): j in [0..n-k]]) >; [f(n,k) - f(n,0) + 1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
-
Maple
with(combinat); f:= proc(n, k) option remember; add((-1)^j*stirling1(n, n-j)*binomial(n, j), j=0..k) + add((-1)^j*stirling1(n, n-j)* binomial(n, j), j=0..n-k); end; seq(seq(f(n,k) -f(n,0) +1, k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
-
Mathematica
f[n_, k_]:= Sum[(-1)^j*StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}] + Sum[(-1)^j*StirlingS1[n, n-j]*Binomial[n, j], {j,0,n-k}]; Table[f[n, k] - f[n, 0] + 1, {n,0,10}, {k,0,n}]//Flatten
-
PARI
f(n,k) = sum(j=0,k, (-1)^j*stirling(n,n-j,1)*binomial(n,j)) + sum(j=0,n-k, (-1)^j*stirling(n, n-j,1)*binomial(n,j)); T(n,k) = f(n,k) - f(n,0) + 1; \\ G. C. Greubel, Nov 26 2019
-
Sage
def f(n, k): return sum(stirling_number1(n,n-j)*binomial(n,j) for j in (0..k)) + sum(stirling_number1(n, n-j)*binomial(n,j) for j in (0..n-k)) [[f(n, k)-f(n,0)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
Formula
With f(n, k) = Sum_{j=0..k} (-1)^j*StirlingS1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} (-1)^j*StirlingS1(n, n-j)*binomial(n, j) then T(n, k) = f(n, k) - f(n, 0) + 1.
Extensions
Name edited by G. C. Greubel, Nov 26 2019
Comments