cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176156 Regular triangle, T(n, k) = f(n, k) - f(n, 0) + 1, where f(n, k) = Sum_{j=0..k} (-1)^j*StirlingS2(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} (-1)^j*StirlingS2(n, n-j)*binomial(n, j), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 25, 67, 25, 1, 1, 51, 281, 281, 51, 1, 1, 91, 646, 1036, 646, 91, 1, 1, 148, -1217, -12536, -12536, -1217, 148, 1, 1, 225, -31079, -287223, -548785, -287223, -31079, 225, 1, 1, 325, -342899, -3906899, -11000741, -11000741, -3906899, -342899, 325, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 10 2010

Keywords

Comments

Row sum are: {1, 2, 5, 22, 119, 666, 2512, -27208, -1184937, -30500426, -716845999, ...}.

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   3,      1;
  1,  10,     10,       1;
  1,  25,     67,      25,       1;
  1,  51,    281,     281,      51,       1;
  1,  91,    646,    1036,     646,      91,      1;
  1, 148,  -1217,  -12536,  -12536,   -1217,    148,   1;
  1, 225, -31079, -287223, -548785, -287223, -31079, 225, 1;
		

Crossrefs

Programs

  • GAP
    f:= function(n,k) return Sum([0..k], j-> Stirling1(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> Stirling1(n, n-j)*Binomial(n,j)); end;
    Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n,0)+1 ))); # G. C. Greubel, Nov 26 2019
  • Magma
    f:= func< n,k | (&+[(-1)^j*StirlingFirst(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[(-1)^j*StirlingFirst(n,n-j)*Binomial(n,j): j in [0..n-k]]) >;
    [f(n,k) - f(n,0) + 1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
    
  • Maple
    with(combinat);
    f:= proc(n, k) option remember; add((-1)^j*stirling1(n, n-j)*binomial(n, j), j=0..k) + add((-1)^j*stirling1(n, n-j)* binomial(n, j), j=0..n-k); end;
    seq(seq(f(n,k) -f(n,0) +1, k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
  • Mathematica
    f[n_, k_]:= Sum[(-1)^j*StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}] + Sum[(-1)^j*StirlingS1[n, n-j]*Binomial[n, j], {j,0,n-k}];
    Table[f[n, k] - f[n, 0] + 1, {n,0,10}, {k,0,n}]//Flatten
  • PARI
    f(n,k) = sum(j=0,k, (-1)^j*stirling(n,n-j,1)*binomial(n,j)) + sum(j=0,n-k, (-1)^j*stirling(n, n-j,1)*binomial(n,j));
    T(n,k) = f(n,k) - f(n,0) + 1; \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    def f(n, k): return sum(stirling_number1(n,n-j)*binomial(n,j) for j in (0..k)) + sum(stirling_number1(n, n-j)*binomial(n,j) for j in (0..n-k))
    [[f(n, k)-f(n,0)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
    

Formula

With f(n, k) = Sum_{j=0..k} (-1)^j*StirlingS1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} (-1)^j*StirlingS1(n, n-j)*binomial(n, j) then T(n, k) = f(n, k) - f(n, 0) + 1.

Extensions

Name edited by G. C. Greubel, Nov 26 2019