A176208 An irregular table with shape sequence A058884 measuring the length of ordered partitions defined by A176207.
2, 2, 3, 2, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 4, 5, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 5, 6, 2, 3, 2, 3, 3, 4, 3, 4, 5, 2, 3, 3, 4, 3, 4, 5, 4, 4, 5, 6, 5, 6, 7, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 4, 5, 6, 2, 3, 3, 4, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 7, 8
Offset: 3
Examples
A058884 begins -1 0 0 1 2 5 8 15 ..., counting 12 13 121 23 14 131 122 1211 ... so triangle T(n,k) begins: 2; 2, 3; 2, 2, 3, 3, 4; 2, 3, 2, 3, 3, 4, 4, 5; 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 5, 6; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..5555 (rows 3..20)
Programs
-
PARI
L(n,k)={vecsort([Vecrev(p) | p<-partitions(k), p[#p] > n-k], , 4)} row(n)={ concat(vector(n-1, k, [#p + 1 | p<-L(n,k)])) } for(n=3, 8, print(row(n))) \\ Andrew Howroyd, Apr 21 2023
Extensions
Terms a(34) and beyond from Andrew Howroyd, Apr 21 2023