A135829 a(n) = F(n)*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1.
0, 1, 1, 3, 10, 53, 434, 5695, 120029, 4086681, 224887484, 20019072757, 2882971364492, 671752346999393, 253253517790135653, 154485317604329747723, 152477261728991251138254, 243506341466516632397539361, 629220538826740707106492847078
Offset: 0
Examples
a(5) = 53 = F(5)*a(4) + a(3) = 5*10 + 3.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..98
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, combinat[fibonacci](n)*a(n-1)+a(n-2)) end: seq(a(n), n=0..20); # Alois P. Heinz, Jan 24 2021
-
Mathematica
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==Fibonacci[n]*a[n-1]+a[n-2]}, a,{n,0,20}] (* Harvey P. Dale, Apr 26 2012 *)
Formula
a(n) = (-a(n-1)*a(n-4)*a(n-2) - a(n-1)*a(n-3)^2 + a(n-1)^2*a(n-3) + a(n-2)^2*a(n-3) + a(n-1)*a(n-2)^2)/(a(n-2)*a(n-3)). - Robert Israel, Dec 04 2016
a(n) ~ c * ((1 + sqrt(5))/2)^(n*(n+1)/2) / 5^(n/2), where c = 2.25240516839867905756631574518868900987391688308922490621152619277084562178... - Vaclav Kotesovec, Dec 29 2019
Extensions
More terms from Michel Lagneau, Apr 12 2010
Offset changed by N. J. A. Sloane, Apr 21 2010
Replaced n with n+1 where needed. - Seung Ju Lee, Aug 30 2020
Incorrect program removed by Alois P. Heinz, Jan 24 2021
Comments