A176267 a(n) = binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of prime(n).
5, 55, 1430, 4862, 1463, 1193010, 1015, 9414328, 18278, 749398, 370577311, 16723070, 225398683020, 7151980, 378683037040, 149846840, 8511300512, 272994644359580, 194480021970, 8516063242041795, 8175951659117794, 50, 42925, 3046258475, 391139588190, 1242164, 1646644081775, 2271776, 38642514470976, 4683175503770976
Offset: 5
Examples
For n = 6, prime(6) = 13, s = 1+3 = 4 and binomial(13, 4)/13 = 715/13 = 55.
Programs
-
Maple
A007605 := proc(n) A007953(ithprime(n)) ; end proc: A176267 := proc(n) local p; p := ithprime(n) ; binomial(p,A007605(n))/p ; end proc: seq(A176267(n),n=5..20) ;
-
Mathematica
pn[n_]:=Module[{pr=Prime[n]},Binomial[pr,Total[IntegerDigits[pr]]]/pr]; Array[pn,40,5] (* Harvey P. Dale, Mar 29 2012 *)
-
Sage
A176267 = lambda n: binomial(nth_prime(n), sum(nth_prime(n).digits()))/nth_prime(n) # D. S. McNeil, Dec 08 2010
Comments