cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176267 a(n) = binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of prime(n).

Original entry on oeis.org

5, 55, 1430, 4862, 1463, 1193010, 1015, 9414328, 18278, 749398, 370577311, 16723070, 225398683020, 7151980, 378683037040, 149846840, 8511300512, 272994644359580, 194480021970, 8516063242041795, 8175951659117794, 50, 42925, 3046258475, 391139588190, 1242164, 1646644081775, 2271776, 38642514470976, 4683175503770976
Offset: 5

Views

Author

Michel Lagneau, Dec 07 2010

Keywords

Comments

Note that a(n) is always an integer, as binomial(p,s) = p! / ((p-s)!/s!) is always divisible by p for prime p because neither (p-s)! nor s! can contain a factor of p when 0 < s < p, which occurs when n >= 5. By contrast, for n < 5, p(n) < 10, the sum of digits is p(n) itself, and the result is 1/p(n).

Examples

			For n = 6, prime(6) = 13, s = 1+3 = 4 and binomial(13, 4)/13 = 715/13 = 55.
		

Crossrefs

Programs

  • Maple
    A007605 := proc(n) A007953(ithprime(n)) ; end proc:
    A176267 := proc(n) local p; p := ithprime(n) ; binomial(p,A007605(n))/p ; end proc:
    seq(A176267(n),n=5..20) ;
  • Mathematica
    pn[n_]:=Module[{pr=Prime[n]},Binomial[pr,Total[IntegerDigits[pr]]]/pr]; Array[pn,40,5] (* Harvey P. Dale, Mar 29 2012 *)
  • Sage
    A176267 = lambda n: binomial(nth_prime(n), sum(nth_prime(n).digits()))/nth_prime(n) # D. S. McNeil, Dec 08 2010