cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176303 a(n) = abs(2^n-127).

Original entry on oeis.org

126, 125, 123, 119, 111, 95, 63, 1, 129, 385, 897, 1921, 3969, 8065, 16257, 32641, 65409, 130945, 262017, 524161, 1048449, 2097025, 4194177, 8388481, 16777089, 33554305, 67108737, 134217601, 268435329, 536870785, 1073741697, 2147483521, 4294967169
Offset: 0

Views

Author

Vladimir Shevelev, Apr 14 2010

Keywords

Examples

			a(2) = abs(2^2-127) = abs(4-127) = abs(-123) = 123. - _Indranil Ghosh_, Feb 20 2017
		

References

  • R. K. Guy, Unsolved problems in number theory, Vol.1, 1994, Springer-Verlag,pages 42-43.

Crossrefs

See A175347, A169716 for primes.

Programs

  • Mathematica
    Table[Abs[2^n-127],{n,0,32}] (* or *) CoefficientList[Series[(126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)) ,{x,0,30}],x] (* Indranil Ghosh, Feb 20 2017 *)
    LinearRecurrence[{3,-2},{126,125,123,119,111,95,63,1,129},40] (* Harvey P. Dale, Feb 11 2024 *)
  • PARI
    Vec((126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Feb 20 2017
    
  • PARI
    a(n)=abs(2^n-127) \\ Charles R Greathouse IV, Feb 20 2017
  • Python
    def A176303(n): return abs(2**n-127) # Indranil Ghosh, Feb 20 2017
    

Formula

From Colin Barker, Feb 20 2017: (Start)
a(n) = 2^n - 127 for n>6.
a(n) = 3*a(n-1) - 2*a(n-2) for n>8.
G.f.: (126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)).
(End)