A175347 Primes in A176303.
140737488355201, 36028797018963841, 10141204801825835211973625642881, 11150372599265311570767859136324180752990081
Offset: 1
Keywords
Formula
a(n) = 2^A169716(n)-127.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Using the lexicographic ordering of A057555 the sequence is: A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)... +1 | 2 4 8 16 32 64 128 256 512 1024 ... ----|----------------------------------------------------------------- 1 | 3 5 9 17 33 65 129 257 513 1025 3 | 7 13 25 49 97 193 385 769 1537 3073 7 | 15 29 57 113 225 449 897 1793 3585 7169 15 | 31 61 121 241 481 961 1921 3841 7681 15361 31 | 63 125 249 497 993 1985 3969 7937 15873 31745 63 | 127 253 505 1009 2017 4033 8065 16129 32257 64513 127 | 255 509 1017 2033 4065 8129 16257 32513 65025 130049 255 | 511 1021 2041 4081 8161 16321 32641 65281 130561 261121 511 | 1023 2045 4089 8177 16353 32705 65409 130817 261633 523265 1023| 2047 4093 8185 16369 32737 65473 130945 261889 523777 1047553 ...
//program generates values in a table form for i:=1 to 10 do m:=2^i - 1; m,[ m*2^n +1 : n in [1..10]]; end for; //program generates sequence in lexicographic ordering of A057555, read //along antidiagonals from top. Primes in the sequence are marked with *. for i:=2 to 18 do for j:=1 to i-1 do m:=2^j -1; k:=m*2^(i-j) + 1; if IsPrime(k) then k,"*"; else k; end if;; end for; end for;
Table[(2^j-1)*2^(i-j+1) + 1, {i, 10}, {j, i}] (* Paolo Xausa, Apr 02 2024 *)
is(n)=ispseudoprime(2^n-127) \\ Charles R Greathouse IV, Sep 14 2015
lm[n_]:=Module[{m=1},While[!PrimeQ[Abs[2^m-n]],m++];m]; Table[lm[i],{i,Prime[ Range[2,100]]}] (* Harvey P. Dale, Aug 11 2014 *)
Comments