A176343 a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.
0, 1, 2, 5, 16, 81, 649, 8438, 177199, 6024767, 331362186, 29491234555, 4246737775921, 989489901789594, 373037692974676939, 227552992714552932791, 224594803809263744664718, 358677901683394200229554647, 926823697949890613393169207849
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Programs
-
GAP
a:= function(n) if n=0 then return 0; else return 1 + Fibonacci(n)*a(n-1); fi; end; List([0..20], n-> a(n) ); # G. C. Greubel, Dec 07 2019
-
Magma
function a(n) if n eq 0 then return 0; else return 1 + Fibonacci(n)*a(n-1); end if; return a; end function; [a(n): n in [0..20]]; // G. C. Greubel, Dec 07 2019
-
Maple
with(combinat); a:= proc(n) option remember; if n=0 then 0 else 1 + fibonacci(n)*a(n-1) fi; end: seq( a(n), n=0..20); # G. C. Greubel, Dec 07 2019
-
Mathematica
a[n_]:= a[n]= If[n==0, 0, Fibonacci[n]*a[n-1] +1]; Table[a[n], {n,0,20}]
-
PARI
a(n) = if(n==0, 0, 1 + fibonacci(n)*a(n-1) ); \\ G. C. Greubel, Dec 07 2019
-
Sage
def a(n): if (n==0): return 0 else: return 1 + fibonacci(n)*a(n-1) [a(n) for n in (0..20)] # G. C. Greubel, Dec 07 2019
Formula
a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0.
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * A101689 = 3.317727324507285486862890025085971028467... is product of Fibonacci factorial constant (see A062073) and Sum_{n>=1} 1/(Product_{k=1..n} A000045(k) ). - Vaclav Kotesovec, Feb 20 2014