A176344
T(n,k) = 1 + A176343(n) - A176343(k) - A176343(n-k), triangle read by rows (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 11, 13, 11, 1, 1, 65, 75, 75, 65, 1, 1, 568, 632, 640, 632, 568, 1, 1, 7789, 8356, 8418, 8418, 8356, 7789, 1, 1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1, 1, 5847568, 6016328, 6024114, 6024671, 6024671, 6024114, 6016328, 5847568, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 11, 13, 11, 1;
1, 65, 75, 75, 65, 1;
1, 568, 632, 640, 632, 568, 1;
1, 7789, 8356, 8418, 8418, 8356, 7789, 1;
1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1;
...
-
b:= function(n)
if n=0 then return 0;
else return 1 + Fibonacci(n)*b(n-1);
fi; end;
T:= function(n,k) return 1 + b(n) - b(n-k) - b(k); end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
-
function b(n)
if n eq 0 then return 0;
else return 1 + Fibonacci(n)*b(n-1);
end if; return b; end function;
function T(n,k) return 1 + b(n) - b(n-k) - b(k); end function; [ T(n,k) : k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
-
with(combinat);
b:= proc(n) option remember;
if n = 0 then 0 else 1+fibonacci(n)*b(n-1)
fi; end proc;
T:= proc (n, k) 1+b(n)-b(n-k)-b(k) end proc;
seq(seq(T(n, k), k = 0..n), n = 0..10); # G. C. Greubel, Dec 08 2019
-
b[n_]:= b[n]= If[n==0, 0, Fibonacci[n]*b[n-1] + 1]; (* A176343 *)
T[n_, k_]:= T[n, k] = 1 + a[n] - a[n-k] - a[k];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Dec 08 2019 *)
-
(a[0] : 0, a[n] := fib(n)*a[n-1] + 1, T(n, m) := 1 + a[n] - a[m] - a[n-m])$ create_list(T(n, m), n, 0, 10, m, 0, n); /* Franck Maminirina Ramaharo, Nov 25 2018 */
-
b(n) = if(n==0, 0, 1 + fibonacci(n)*b(n-1) );
T(n,k) = 1 + b(n) - b(n-k) - b(k);
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 07 2019
-
def b(n):
if (n==0): return 0
else: return 1 + fibonacci(n)*b(n-1)
def T(n,k): return 1 + b(n) - b(n-k) - b(k)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
A003266
Product of first n nonzero Fibonacci numbers F(1), ..., F(n).
Original entry on oeis.org
1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000
Offset: 0
a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..99 (terms n = 1..50 from T. D. Noe)
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- Spencer J. Franks, Pamela E. Harris, Kimberly Harry, Jan Kretschmann, and Megan Vance, Counting Parking Sequences and Parking Assortments Through Permutations, arXiv:2301.10830 [math.CO], 2023.
- Shyam Sunder Gupta, Fabulous Fibonacci Numbers, Lucas Numbers, and Golden Ratio, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 8, 223-274.
- Tipaluck Krityakierne and Thotsaporn Aek Thanatipanonda, Ansatz in a Nutshell: A Comprehensive Step-by-Step Guide to Polynomial, C-finite, Holonomic, and C^2-finite Sequences, in Applied Mathematical Analysis and Computations (SGMC 2021) Springer Proc. Math. Stat., Vol. 471. Springer, Cham, 255-297. See p. 287.
- Mathematica Stack Exchange, Product of Fibonacci numbers using For/Do/While loops.
- Yuri V. Matiyasevich and Richard K. Guy, A new formula for Pi, Amer. Math. Monthly 93 (1986), no. 8, 631-635. Math. Rev. 2000i:11199.
- Aidan Sudbury, Arthur Sun, David Treeby, and Edward Wang, Pick-up Sticks and the Fibonacci Factorial, arXiv:2504.19911 [math.PR], 2025.
- Thotsaporn Aek Thanatipanonda and Yi Zhang, Sequences: Polynomial, C-finite, Holonomic, ..., arXiv:2004.01370 [math.CO], 2020. See pp. 5-6.
- Eric Weisstein's World of Mathematics, Fibonorial
- Index to divisibility sequences.
-
a003266 n = a003266_list !! (n-1)
a003266_list = scanl1 (*) $ tail a000045_list
-- Reinhard Zumkeller, Sep 03 2013
-
with(combinat): A003266 := n-> mul(fibonacci(i),i=1..n): seq(A003266(n), n=0..20);
-
Rest[FoldList[Times,1,Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
-
a(n)=prod(i=1,n,fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
-
from itertools import islice
def A003266_gen(): # generator of terms
a,b,c = 1,1,1
while True:
yield c
c *= a
a, b = b, a+b
A003266_list = list(islice(A003266_gen(),20)) # Chai Wah Wu, Jan 11 2023
A238244
A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 3.
Original entry on oeis.org
1, 4, 11, 36, 183, 1467, 19074, 400557, 13618941, 749041758, 66664716465, 9599719170963, 2236734566834382, 843248931696562017, 514381848334902830373, 507694884306549093578154, 810788730237558902444311941, 2095078078933852203916102055547
Offset: 1
-
RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+3,a[1]==1},a,{n,1,20}]
nxt[{n_,a_}]:={n+1,a*Fibonacci[n+1]+3}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 04 2024 *)
A238243
A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 2.
Original entry on oeis.org
1, 3, 8, 26, 132, 1058, 13756, 288878, 9821854, 540201972, 48077975510, 6923228473442, 1613112234311988, 608143312335619478, 370967420524727881582, 366144844057906419121436, 584733315960476551336933294, 1510950888441871408654635631698
Offset: 1
-
RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+2,a[1]==1},a,{n,1,20}]
Showing 1-4 of 4 results.
Comments