cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176345 Sum of gcd(k,n) from k = 1 to n over "regular" integers only (an integer k is regular if there is an x such that k^2 x == k (mod n)).

Original entry on oeis.org

1, 3, 5, 6, 9, 15, 13, 12, 15, 27, 21, 30, 25, 39, 45, 24, 33, 45, 37, 54, 65, 63, 45, 60, 45, 75, 45, 78, 57, 135, 61, 48, 105, 99, 117, 90, 73, 111, 125, 108, 81, 195, 85, 126, 135, 135, 93, 120, 91, 135, 165, 150, 105, 135, 189, 156, 185, 171, 117, 270, 121, 183, 195
Offset: 1

Views

Author

Jeffrey Shallit, Apr 15 2010

Keywords

Comments

It is also the product of n and (2-1/p), taken over all primes p dividing n.

Examples

			For n = 8, the regular integers mod 8 are 1,3,5,7,8, so the sum of gcd's of 8 with these numbers is 12.
		

Crossrefs

Programs

  • Maple
    A176345 := proc(n)
        n*mul(2-1/p,p=numtheory[factorset](n)) ;
    end proc:
    seq(A176345(n),n=1..40) ; # R. J. Mathar, Sep 13 2016
  • Mathematica
    f[p_, e_] := 2*p^e - p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    isregg(k, n) = {g = gcd(k, n); if ((n % g == 0) && (gcd(g, n/g) == 1), return(g), return(0));}
    a(n) = sum(k=1, n, isregg(k, n)) \\ Michel Marcus, May 25 2013
    
  • PARI
    a(n) = sumdiv(n, d, d * eulerphi(n/d) * moebius(n/d)^2); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, 2*f[k,1]^f[k,2] - f[k,1]^(f[k,2]-1)); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X^2 - p^2*X^2 - X)/(1-p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021

Formula

Multiplicative with a(p^e) = 2*p^e-p^(e-1).
Dirichlet g.f.: zeta(s-1)*product_p (1+p^(1-s)-p^(-s)). Dirichlet convolution of the series of absolute values of A097945 with A000027. - R. J. Mathar, Jun 11 2011
From Daniel Suteu, Jun 27 2018: (Start)
a(n) = Sum_{d|n} d * phi(n/d) * mu(n/d)^2.
a(n) = Sum_{d|n, gcd(n/d, d) = 1} d * phi(n/d). (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*n/gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Vaclav Kotesovec, Aug 20 2021: (Start)
Dirichlet g.f.: zeta(s-1)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then Sum_{k=1..n} a(k) ~ n^2 * (f(2)*(log(n)/2 + gamma - 1/4) + f'(2)/2), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858... and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{k = 1..n} rad(gcd(k, n)) = Sum_{d divides n} rad(d)*phi(n/d), where rad(n) = A007947(n). - Peter Bala, Jan 22 2024