cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143869 An integer k is called regular (mod n) if there is an integer x such that k^2 x == k (mod n). Then these numbers are the sum of regular integers k (mod n) such that 1 <= k <= n for n=1,2,... .

Original entry on oeis.org

1, 3, 6, 8, 15, 21, 28, 24, 36, 55, 66, 60, 91, 105, 120, 80, 153, 135, 190, 160, 231, 253, 276, 192, 275, 351, 270, 308, 435, 465, 496, 288, 561, 595, 630, 396, 703, 741, 780, 520, 861, 903, 946, 748, 810, 1081, 1128, 672, 1078, 1075, 1326, 1040, 1431, 1053
Offset: 1

Views

Author

Laszlo Toth, Sep 04 2008

Keywords

Crossrefs

Programs

  • PARI
    isregu(k, n) = {g = gcd(k, n); if ((n % g == 0) && (gcd(g, n/g) == 1), return(k), return(0));}
    a(n) = sum(k=1, n, isregu(k, n)) \\ Michel Marcus, May 25 2013

Formula

a(n) = n*(A055653(n)+1)/2.

Extensions

Extended by R. J. Mathar, Sep 05 2008

A335032 Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(1 - s) - p^(-s)).

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 21, 40, 22, 60, 26, 56, 60, 46, 34, 84, 38, 100, 84, 88, 46, 132, 55, 104, 66, 140, 58, 240, 62, 94, 132, 136, 140, 210, 74, 152, 156, 220, 82, 336, 86, 220, 210, 184, 94, 276, 105, 220, 204, 260, 106, 264, 220, 308, 228, 232, 118
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 20 2020

Keywords

Comments

Dirichlet convolution of A000203 with abs(A097945).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, n/d] * Abs[MoebiusMu[d]] * EulerPhi[d], {d, Divisors[n]}], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)/(1 - p*X))[n], ", "))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X/(1 - X))/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1)^2 / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s) * zeta(s-1)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Let f(s) = Product_{primes p} (1 - 1/(p^s + p)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)/2 + gamma - 3*zeta'(2)/Pi^2 - 1/4)*f(2) + f'(2)/2), where f(2) = A065463 = Product_{primes p} (1 - 1/(p*(p+1))) = 0.7044422009991655927366033503266372..., f'(2) = f(2) * Sum_{primes p} p*log(p) / ((p+1)*(p^2+p-1)) = 0.23219454323726621271960146689644280341444084188447499043209938838191022838..., for zeta'(2) see A073002 and gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{d|n} A176345(d). - Ridouane Oudra, Jan 14 2022
Multiplicative with a(p^e) = sigma(p^e) + p^e - 1. - Amiram Eldar, Dec 25 2022

A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 12, 15, 40, 22, 48, 26, 56, 60, 16, 34, 60, 38, 80, 84, 88, 46, 72, 35, 104, 24, 112, 58, 240, 62, 20, 132, 136, 140, 120, 74, 152, 156, 120, 82, 336, 86, 176, 150, 184, 94, 96, 63, 140, 204, 208, 106, 96, 220, 168, 228, 232, 118, 480
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Last[Select[Divisors[d], SquareFreeQ]] Last[Select[Divisors[n/d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e - 1)*p^2 + 2*p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A349694(n) = sumdiv(n,d,A007947(n/d)*A007947(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + p^(1-s) - p^(-s))^2.
a(n) = Sum_{d|n} A007947(d) * A007947(n/d).
a(n) = Sum_{d|n} abs(A097945(d)) * A191750(n/d).
Multiplicative with a(p^e) = (e-1)*p^2 + 2*p. - Amiram Eldar, Nov 25 2021
From Vaclav Kotesovec, Nov 26 2021: (Start)
Dirichlet g.f.: zeta(s-1)^2 * zeta(s)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))^2.
Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then
Sum_{k=1..n} a(k) ~ Pi^2 * f(2)^2 * n^2 / 144 * (Pi^2 * (2*log(n) + 4*gamma - 1 + 4*f'(2)/f(2)) + 24*zeta'(2)), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858..., zeta'(2) = -A073002 and gamma is the Euler-Mascheroni constant A001620. (End)

A374432 Row sums of A374433.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 16, 14, 13, 16, 28, 22, 31, 26, 40, 46, 25, 34, 46, 38, 55, 66, 64, 46, 61, 46, 76, 46, 79, 58, 136, 62, 49, 106, 100, 118, 91, 74, 112, 126, 109, 82, 196, 86, 127, 136, 136, 94, 121, 92, 136, 166, 151, 106, 136, 190, 157, 186, 172, 118, 271
Offset: 0

Views

Author

Peter Luschny, Jul 10 2024

Keywords

Crossrefs

Cf. A374433, A176345 (a(n + 1) - 1).

Programs

  • Maple
    seq(add(A374433(n, k), k = 0..n), n=0..60);
  • Mathematica
    nn = 120; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1};
    Table[Sum[Times @@ Intersection[s[k], s[n]], {k, 0, n}], {n, 0, nn}] (* Michael De Vlieger, Jul 11 2024 *)
  • Python
    print([sum([A374433(n, k) for k in range(n + 1)]) for n in range(61)])
Showing 1-4 of 4 results.