cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A343964 Decimal expansion of 18 + 2*sqrt(3).

Original entry on oeis.org

2, 1, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 05 2021

Keywords

Comments

Surface area of a rhombicuboctahedron with unit edge length.
Essentially the same sequence of digits as A176394 and A010469. - R. J. Mathar, May 07 2021

Examples

			21.464101615137754587054892683011744733885...
		

Crossrefs

Cf. A343965 (rhombicuboctahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 18+2*Sqrt(3);
  • Mathematica
    RealDigits[N[18 + 2*Sqrt[3], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A343199 Decimal expansion of 6+2*sqrt(3).

Original entry on oeis.org

9, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5, 1, 3, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 07 2021

Keywords

Comments

Decimal expansion of the surface area of a cuboctahedron with unit edge length.
Essentially the same sequence of digits as A176394 and A010469. - R. J. Mathar, Jun 10 2021

Examples

			9.4641016151377545870548926830117447338856...
		

Crossrefs

Cf. A020775 (cuboctahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(200)); 6+2*Sqrt(3);
  • Mathematica
    RealDigits[N[6 + 2*Sqrt[3], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A286760 Total number of nodes summed over all lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1), H=(1,0) and S=(0,1).

Original entry on oeis.org

1, 2, 10, 42, 214, 1098, 5978, 33190, 189078, 1093490, 6414714, 38027030, 227489950, 1370980490, 8314674202, 50696630838, 310541818382, 1909850054666, 11786947172234, 72969941803662, 452976340653030, 2818815920369754, 17579546535174946, 109850944544149134
Offset: 0

Views

Author

Alois P. Heinz, May 14 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, [1$2],
          (p-> p+[0, p[1]])(b(x-1, y)+b(x, y-1)+b(x-1, y-1)+b(x-1, y+1))))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y<0 || y>x, 0, If[x == 0, {1, 1}, Function[
       p, p+{0, p[[1]]}][b[x-1, y] + b[x, y-1] + b[x-1, y-1] + b[x-1, y+1]]]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 28 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * (3 + 2*sqrt(3))^n / sqrt(n), where c = 0.0889843039487036085233000284915570190371055498671732340656... - Vaclav Kotesovec, Sep 11 2021

A277390 Decimal expansion of 5-2*sqrt(5)+sqrt(25-10*sqrt(5))-sqrt(5-2*sqrt(5)).

Original entry on oeis.org

1, 4, 2, 5, 9, 1, 9, 9, 9, 8, 1, 5, 9, 5, 9, 1, 3, 5, 2, 0, 6, 5, 5, 4, 2, 9, 6, 6, 1, 3, 2, 5, 0, 1, 1, 0, 4, 2, 7, 7, 1, 8, 8, 2, 4, 5, 4, 1, 9, 1, 1, 5, 5, 9, 0, 2, 4, 7, 1, 6, 2, 7, 7, 7, 5, 1, 6, 5, 7, 3, 2, 6, 1, 6, 8, 2, 4, 3, 1, 8, 5, 4, 3, 6, 4, 0, 3
Offset: 1

Views

Author

Martin Renner, Oct 12 2016

Keywords

Comments

Largest radius of five circles tangent to a circle of radius 1.
A quartic integer with minimal polynomial x^4 - 20x^3 + 10x^2 + 20x + 5. - Charles R Greathouse IV, Oct 12 2016

Examples

			1.42591999815959135206...
		

Crossrefs

Cf. A176394 (three circles), A014176 (four circles).

Programs

  • Mathematica
    RealDigits[5-2*Sqrt[5]+Sqrt[25-10*Sqrt[5]]-Sqrt[5-2*Sqrt[5]],10,120][[1]] (* Harvey P. Dale, May 20 2021 *)
  • PARI
    s=sqrt(5); t=5-2*s; sqrt(25-10*s)+t-sqrt(t) \\ Charles R Greathouse IV, Oct 12 2016

Formula

tan(Pi/5)*(tan(Pi/5)+sqrt(1+tan(Pi/5)^2)).
Showing 1-4 of 4 results.