cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176415 Periodic sequence: repeat 7,1.

Original entry on oeis.org

7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7
Offset: 0

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Interleaving of A010727 and A000012.
Also continued fraction expansion of (7+sqrt(77))/2.
Also decimal expansion of 71/99.
Essentially first differences of A047521.
Binomial transform of A176414.
Inverse binomial transform of 2*A020707 preceded by 7.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 4*x^3 + 10*x^4 + 10*x^5 + ... is the o.g.f. for A058187. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A010727 (all 7's sequence), A000012 (all 1's sequence), A092290 (decimal expansion of (7+sqrt(77))/2), A010688 (repeat 1, 7), A047521 (congruent to 0 or 7 mod 8), A176414 (expansion of (7+8*x)/(1+2*x)), A020707 (2^(n+2)), A058187.

Programs

  • Magma
    &cat[ [7, 1]: n in [0..52] ];
    [ 4+3*(-1)^n: n in [0..104] ];
    
  • Mathematica
    PadRight[{},120,{7,1}] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    a(n)=7-n%2*6 \\ Charles R Greathouse IV, Oct 28 2011

Formula

a(n) = 4+3*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 7, a(1) = 1.
a(n) = -a(n-1)+8 for n > 0; a(0) = 7.
a(n) = 7*((n+1) mod 2)+(n mod 2).
a(n) = A010688(n+1).
G.f.: (7+x)/(1-x^2).
Dirichglet g.f.: (1+6*2^(-s))*zeta(s). - R. J. Mathar, Apr 06 2011
Multiplicative with a(2^e) = 7, and a(p^e) = 1 for p >= 3. - Amiram Eldar, Jan 01 2023