A176449 a(n) = 9*2^n - 2.
7, 16, 34, 70, 142, 286, 574, 1150, 2302, 4606, 9214, 18430, 36862, 73726, 147454, 294910, 589822, 1179646, 2359294, 4718590, 9437182, 18874366, 37748734, 75497470, 150994942, 301989886, 603979774, 1207959550, 2415919102
Offset: 0
Examples
For n = 1, a(1) = 2*(7+1) = 16; for n = 2, a(2) = 2*(16+1) = 34; for n = 3, a(3) = 2*(34+1) = 70.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Magma
[9*2^n-2: n in [0..100]]
-
Maple
A176449:=n->9*2^n-2; seq(A176449(n), n=0..100); # Wesley Ivan Hurt, Nov 08 2013
-
Mathematica
Table[9*2^n-2, {n,0,100}] (* Wesley Ivan Hurt, Nov 08 2013 *) LinearRecurrence[{3,-2},{7,16},40] (* Harvey P. Dale, Jan 12 2024 *)
-
PARI
apply( A176449(n)=9<
M. F. Hasler, Dec 11 2018
Formula
a(n) = 2*(a(n-1)+1) with a(0) = 7.
a(n) = 3*a(n-1) -2*a(n-2). G.f.: (7-5*x) / ((2*x-1)*(x-1)). - R. J. Mathar, May 02 2010
Extensions
Edited by M. F. Hasler, Dec 11 2018