A176499 Haros-Farey sequence whose argument is the Fibonacci number; Farey(m) where m = Fibonacci(n + 1).
2, 3, 5, 11, 23, 59, 141, 361, 941, 2457, 6331, 16619, 43359, 113159, 296385, 775897, 2030103, 5315385, 13912615, 36421835, 95355147, 249635525, 653525857, 1710966825, 4479358275, 11726974249, 30701593527, 80377757397, 210431301141, 550916379293
Offset: 1
Keywords
Examples
n = 5, m = Fibonacci(5 + 1) = 8, Farey(8) = 23.
Links
- Antoine Mathys, Table of n, a(n) for n = 1..50
- Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000). Digital Object Identifier (DOI): 10.1119/1.19396.
- Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
- Sameen Ahmed KHAN, Mathematica notebook 1
- Sameen Ahmed KHAN, Mathematica notebook 2
- Hugo Pfoertner, Ratio for series-parallel networks, Plot2 of A048211(n)/a(n).
- Hugo Pfoertner, Ratio for networks with bridges, Plot2 of A174283(n)/a(n).
- Hugo Pfoertner, Ratio for arbitrary networks, Plot2 of A337517(n)/a(n).
Crossrefs
Programs
-
GAP
List([1..30],n->Sum([1..Fibonacci(n+1)],i->Phi(i)))+1; # Muniru A Asiru, Jul 31 2018
-
Magma
[1+&+[EulerPhi(i):i in [1..Fibonacci(n+1)]]:n in [1..30]]; // Marius A. Burtea, Jul 26 2019
-
Maple
with(numtheory): with(combinat,fibonacci): a:=n->1+add(phi(i),i=1..n): seq(a(fibonacci(n+1)),n=1..30); # Muniru A Asiru, Jul 31 2018
-
Mathematica
b[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}]; a[n_] := b[Fibonacci[n + 1]]; Array[a, 30] (* Jean-François Alcover, Sep 20 2018 *)
-
PARI
farey(n) = 1+sum(k=1, n, eulerphi(k)); a(n) = farey(fibonacci(n+1)); \\ Michel Marcus, Jul 31 2018
Formula
Extensions
a(26)-a(29) from Sameen Ahmed Khan, May 02 2010
a(30) from Antoine Mathys, Aug 06 2018
Comments