A176641 Triangle T(n, k) = 28^(k*(n-k)), read by rows.
1, 1, 1, 1, 28, 1, 1, 784, 784, 1, 1, 21952, 614656, 21952, 1, 1, 614656, 481890304, 481890304, 614656, 1, 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1, 1, 481890304, 296196766695424, 232218265089212416, 232218265089212416, 296196766695424, 481890304, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 28, 1; 1, 784, 784, 1; 1, 21952, 614656, 21952, 1; 1, 614656, 481890304, 481890304, 614656, 1; 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[(28)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
Mathematica
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k)); Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *) With[{m=26}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
Sage
flatten([[(28)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
Formula
T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 4.
From G. C. Greubel, Jun 30 2021: (Start)
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 26.
T(n, k, p) = binomial(p+2, 2)^(k*(n-k)) with p = 6. (End)
Extensions
Edited by G. C. Greubel, Jun 30 2021