A158116
Triangle T(n,k) = 6^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 36, 36, 1, 1, 216, 1296, 216, 1, 1, 1296, 46656, 46656, 1296, 1, 1, 7776, 1679616, 10077696, 1679616, 7776, 1, 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1, 1, 279936, 2176782336, 470184984576, 2821109907456, 470184984576, 2176782336, 279936, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 6, 1;
1, 36, 36, 1;
1, 216, 1296, 216, 1;
1, 1296, 46656, 46656, 1296, 1;
1, 7776, 1679616, 10077696, 1679616, 7776, 1;
1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3), this sequence (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[6^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
With[{m=4}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
T(n,k) = 6^(k*(n-k));
for (n=0,11,for (k=0,n, print1(T(n,k),", "));print();); \\ Joerg Arndt, Feb 21 2014
-
flatten([[6^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A158117
Triangle T(n, k) = 10^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 100, 100, 1, 1, 1000, 10000, 1000, 1, 1, 10000, 1000000, 1000000, 10000, 1, 1, 100000, 100000000, 1000000000, 100000000, 100000, 1, 1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 100, 100, 1;
1, 1000, 10000, 1000, 1;
1, 10000, 1000000, 1000000, 10000, 1;
1, 100000, 100000000, 1000000000, 100000000, 100000, 1;
1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6), this sequence (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[10^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_]= Binomial[q+2,2](k*(n-k));
Table[T[n,k,3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=8}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[10^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176627
Triangle T(n, k) = 12^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 144, 144, 1, 1, 1728, 20736, 1728, 1, 1, 20736, 2985984, 2985984, 20736, 1, 1, 248832, 429981696, 5159780352, 429981696, 248832, 1, 1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 144, 144, 1;
1, 1728, 20736, 1728, 1;
1, 20736, 2985984, 2985984, 20736, 1;
1, 248832, 429981696, 5159780352, 429981696, 248832, 1;
1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8), this sequence (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(12)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k));
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=10}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(12)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176639
Triangle T(n, k) = 15^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 15, 1, 1, 225, 225, 1, 1, 3375, 50625, 3375, 1, 1, 50625, 11390625, 11390625, 50625, 1, 1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1, 1, 11390625, 576650390625, 129746337890625, 129746337890625, 576650390625, 11390625, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 225, 225, 1;
1, 3375, 50625, 3375, 1;
1, 50625, 11390625, 11390625, 50625, 1;
1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10), this sequence (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=13}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176642
Triangle T(n, k) = 8^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 64, 64, 1;
1, 512, 4096, 512, 1;
1, 4096, 262144, 262144, 4096, 1;
1, 32768, 16777216, 134217728, 16777216, 32768, 1;
1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4), this sequence (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176631
Triangle T(n, k) = 22^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 22, 1;
1, 484, 484, 1;
1, 10648, 234256, 10648, 1;
1, 234256, 113379904, 113379904, 234256, 1;
1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19), this sequence (m=20),
A176641 (m=26),
A176644 (m=38).
-
[22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A176643
Triangle T(n, k) = 21^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 21, 1, 1, 441, 441, 1, 1, 9261, 194481, 9261, 1, 1, 194481, 85766121, 85766121, 194481, 1, 1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1, 1, 85766121, 16679880978201, 7355827511386641, 7355827511386641, 16679880978201, 85766121, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 21, 1;
1, 441, 441, 1;
1, 9261, 194481, 9261, 1;
1, 194481, 85766121, 85766121, 194481, 1;
1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15), this sequence (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(21)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
Table[21^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[(21)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A176644
Triangle T(n, k) = 40^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 40, 1, 1, 1600, 1600, 1, 1, 64000, 2560000, 64000, 1, 1, 2560000, 4096000000, 4096000000, 2560000, 1, 1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1, 1, 4096000000, 10485760000000000, 16777216000000000000, 16777216000000000000, 10485760000000000, 4096000000, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 40, 1;
1, 1600, 1600, 1;
1, 64000, 2560000, 64000, 1;
1, 2560000, 4096000000, 4096000000, 2560000, 1;
1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26), this sequence (m=38).
-
[40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
Table[(40)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
Showing 1-8 of 8 results.