cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A158116 Triangle T(n,k) = 6^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 36, 36, 1, 1, 216, 1296, 216, 1, 1, 1296, 46656, 46656, 1296, 1, 1, 7776, 1679616, 10077696, 1679616, 7776, 1, 1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1, 1, 279936, 2176782336, 470184984576, 2821109907456, 470184984576, 2176782336, 279936, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 12 2009

Keywords

Examples

			Triangle starts:
  1;
  1,     1;
  1,     6,        1;
  1,    36,       36,          1;
  1,   216,     1296,        216,          1;
  1,  1296,    46656,      46656,       1296,        1;
  1,  7776,  1679616,   10077696,    1679616,     7776,     1;
  1, 46656, 60466176, 2176782336, 2176782336, 60466176, 46656, 1;
		

Crossrefs

Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), this sequence (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).
Cf. this sequence (q=2), A176639 (q=3), A176641 (q=4).

Programs

  • Magma
    [6^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    With[{m=4}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • PARI
    T(n,k) = 6^(k*(n-k));
    for (n=0,11,for (k=0,n, print1(T(n,k),", "));print();); \\ Joerg Arndt, Feb 21 2014
    
  • Sage
    flatten([[6^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n,k) = 6^(k*(n-k)). - Tom Edgar, Feb 20 2014
T(n,k) = (1/n)*(6^(n-k)*k*T(n-1,k-1) + 6^k*(n-k)*T(n-1,k)). - Tom Edgar, Feb 20 2014
From G. C. Greubel, Jun 30 2021: (Start)
T(n, k, m) = (m+2)^(k*(n-k)) with m = 4.
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 2. (End)

Extensions

Overall edit and new name by Tom Edgar and Joerg Arndt, Feb 21 2014

A158117 Triangle T(n, k) = 10^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 100, 100, 1, 1, 1000, 10000, 1000, 1, 1, 10000, 1000000, 1000000, 10000, 1, 1, 100000, 100000000, 1000000000, 100000000, 100000, 1, 1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 12 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      10,           1;
  1,     100,         100,             1;
  1,    1000,       10000,          1000,             1;
  1,   10000,     1000000,       1000000,         10000,           1;
  1,  100000,   100000000,    1000000000,     100000000,      100000,       1;
  1, 1000000, 10000000000, 1000000000000, 1000000000000, 10000000000, 1000000, 1;
		

Crossrefs

Cf. A007318 (q=0), A118180 (q=1), A158116 (q=2), this sequence (q=3), A176639 (q=4), A176643 (q=5), A176641 (q=6).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), this sequence (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [10^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    (* First program *)
    T[n_, k_, q_]= Binomial[q+2,2](k*(n-k));
    Table[T[n,k,3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
    (* Second program *)
    With[{m=8}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[10^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k,q)*c(n-k,q)) where c(n, k) = binomial(q+2, 2)^binomial(n+1, 2), c(n, 0) = n!, and q = 3.
T(n, k, q) = binomial(q+2, 2)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 8. - G. C. Greubel, Jun 30 2021

Extensions

Edited by G. C. Greubel, Jun 30 2021

A176627 Triangle T(n, k) = 12^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 144, 144, 1, 1, 1728, 20736, 1728, 1, 1, 20736, 2985984, 2985984, 20736, 1, 1, 248832, 429981696, 5159780352, 429981696, 248832, 1, 1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      12,           1;
  1,     144,         144,             1;
  1,    1728,       20736,          1728,             1;
  1,   20736,     2985984,       2985984,         20736,           1;
  1,  248832,   429981696,    5159780352,     429981696,      248832,       1;
  1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1;
		

Crossrefs

Cf. A000326,
Cf. A118190 (q=2), this sequence (q=3), A176631 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), this sequence (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [(12)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    (* First program *)
    T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k));
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
    (* Second program *)
    With[{m=10}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[(12)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 3.
T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 10. - G. C. Greubel, Jun 30 2021

Extensions

Edited by G. C. Greubel, Jun 30 2021

A176639 Triangle T(n, k) = 15^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 15, 1, 1, 225, 225, 1, 1, 3375, 50625, 3375, 1, 1, 50625, 11390625, 11390625, 50625, 1, 1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1, 1, 11390625, 576650390625, 129746337890625, 129746337890625, 576650390625, 11390625, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     15,          1;
  1,    225,        225,           1;
  1,   3375,      50625,        3375,          1;
  1,  50625,   11390625,    11390625,      50625,      1;
  1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1;
		

Crossrefs

Cf. A000384.
Cf. A158116 (q=2), this sequence (q=3), A176641 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), this sequence (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    (* First program *)
    T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
    Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
    (* Second program *)
    With[{m=13}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 3.
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 13. - G. C. Greubel, Jun 30 2021

Extensions

Edited by G. C. Greubel, Jun 30 2021

A176642 Triangle T(n, k) = 8^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      8,          1;
  1,     64,         64,           1;
  1,    512,       4096,         512,           1;
  1,   4096,     262144,      262144,        4096,          1;
  1,  32768,   16777216,   134217728,    16777216,      32768,      1;
  1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
		

Crossrefs

Cf. this sequence (q=2), A176643 (q=3), A176644 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), this sequence (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
    With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 2.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 2.
T(n, k) = 8^A004247(n,k), where A004247 is interpreted as a triangle. [relation detected by sequencedb.net]. - R. J. Mathar, Jun 30 2021
T(n, k, m) = (m+2)^(k*(n-k)) with m = 6. - G. C. Greubel, Jun 30 2021

Extensions

Edited by R. J. Mathar and G. C. Greubel, Jun 30 2021

A176631 Triangle T(n, k) = 22^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      22,           1;
  1,     484,         484,             1;
  1,   10648,      234256,         10648,           1;
  1,  234256,   113379904,     113379904,      234256,       1;
  1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
		

Crossrefs

Cf. A000326.
Cf. A118190 (q=2), A176627 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), this sequence (m=20), A176641 (m=26), A176644 (m=38).

Programs

  • Magma
    [22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
    Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 4.
T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 20. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021

A176643 Triangle T(n, k) = 21^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 21, 1, 1, 441, 441, 1, 1, 9261, 194481, 9261, 1, 1, 194481, 85766121, 85766121, 194481, 1, 1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1, 1, 85766121, 16679880978201, 7355827511386641, 7355827511386641, 16679880978201, 85766121, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      21,           1;
  1,     441,         441,            1;
  1,    9261,      194481,         9261,           1;
  1,  194481,    85766121,     85766121,      194481,       1;
  1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1;
		

Crossrefs

Cf. A000567.
Cf. A176642 (q=2), this sequence (q=3), A176644 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), this sequence (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [(21)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
    Table[21^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[(21)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 3.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 19. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021

A176644 Triangle T(n, k) = 40^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 40, 1, 1, 1600, 1600, 1, 1, 64000, 2560000, 64000, 1, 1, 2560000, 4096000000, 4096000000, 2560000, 1, 1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1, 1, 4096000000, 10485760000000000, 16777216000000000000, 16777216000000000000, 10485760000000000, 4096000000, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,         1;
  1,        40,             1;
  1,      1600,          1600,               1;
  1,     64000,       2560000,           64000,             1;
  1,   2560000,    4096000000,      4096000000,       2560000,         1;
  1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
		

Crossrefs

Cf. A000567.
Cf. A176642 (q=2), A176643 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26), this sequence (m=38).

Programs

  • Magma
    [40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
    Table[(40)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 4.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 38. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021
Showing 1-8 of 8 results.