A176672 a(2*n) = 1 + 6*n, a(2*n+1) = A165367(n).
1, 1, 7, 5, 13, 4, 19, 11, 25, 7, 31, 17, 37, 10, 43, 23, 49, 13, 55, 29, 61, 16, 67, 35, 73, 19, 79, 41, 85, 22, 91, 47, 97, 25, 103, 53, 109, 28, 115, 59, 121, 31, 127, 65, 133, 34, 139, 71, 145, 37, 151, 77, 157, 40, 163, 83, 169, 43, 175, 89, 181, 46, 187, 95, 193
Offset: 0
Links
- M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Formula
From R. J. Mathar, Jan 06 2011: (Start)
a(n) = 2*a(n-4) - a(n-8).
G.f.: (1 + x + 7*x^2 + 5*x^3 + 11*x^4 + 2*x^5 + 5*x^6 + x^7) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2). (End)
a(n) = (2*(3*n + 1)*(11 + 5*(-1)^n) + (6*n + 5 + 3*(-1)^n)*(1 - (-1)^n)*(-1)^((2*n + 3 + (-1)^n)/4))/32. - Luce ETIENNE, Jan 28 2015
Comments