cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176672 a(2*n) = 1 + 6*n, a(2*n+1) = A165367(n).

Original entry on oeis.org

1, 1, 7, 5, 13, 4, 19, 11, 25, 7, 31, 17, 37, 10, 43, 23, 49, 13, 55, 29, 61, 16, 67, 35, 73, 19, 79, 41, 85, 22, 91, 47, 97, 25, 103, 53, 109, 28, 115, 59, 121, 31, 127, 65, 133, 34, 139, 71, 145, 37, 151, 77, 157, 40, 163, 83, 169, 43, 175, 89, 181, 46, 187, 95, 193
Offset: 0

Views

Author

Paul Curtz, Apr 23 2010

Keywords

Comments

Motivation: Start an array from a left column of fractions 0, 1/6, 0, -1/30, 0, ... = A176327(.)/A176592(.), which is zero followed by the Bernoulli numbers from B_2 onwards.
Construct more columns of the array by iteration of the Akiyama-Tanigawa algorithm working backwards through the rows of the table. In our case, the array starts with column indices k>=0:
0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, ...
1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, ...
0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, ...
-1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, ...
0, -1/42, -1/28, -4/105, -1/28, -29/924, ...
1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, ...
The fractions of the top row are -A060819(n)/A145979(n). The current sequence contains essentially the difference between numerator and denominator of each fraction, a(2)=6+1, a(3)=4+1, a(4)=10+3, ... The sum of numerator and denominator is essentially A060819.
Also, numerators of (3*n + 1)/12. - Bruno Berselli, Apr 13 2018
Also, numerators of (3*n + 1)/4. - Altug Alkan, Apr 17 2018

Crossrefs

Formula

From R. J. Mathar, Jan 06 2011: (Start)
a(n) = 2*a(n-4) - a(n-8).
G.f.: (1 + x + 7*x^2 + 5*x^3 + 11*x^4 + 2*x^5 + 5*x^6 + x^7) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2). (End)
a(n) = (2*(3*n + 1)*(11 + 5*(-1)^n) + (6*n + 5 + 3*(-1)^n)*(1 - (-1)^n)*(-1)^((2*n + 3 + (-1)^n)/4))/32. - Luce ETIENNE, Jan 28 2015