cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A194531 Numerator of row 4 in A051714(n) or row 3 in A176672(n).

Original entry on oeis.org

0, 1, 1, 2, 5, 5, 7, 28, 3, 15, 55, 22, 13, 91, 35, 40, 34, 51, 57, 190, 35, 77, 253, 92, 25, 325, 117, 126, 203, 145, 155, 496, 44, 187, 595, 210, 111, 703, 247, 260, 205, 287, 301, 946, 165, 345, 1081, 376, 98, 1225, 425
Offset: 0

Views

Author

Paul Curtz, Aug 28 2011

Keywords

Comments

Akiyama-Tanigawa algorithm from 1/n leads to Bernoulli A164555(n)/A027642(n):
1, 1/2, 1/3, 1/4,
1/2, 1/3, 1/4, 1/5,
1/6, 1/6, 3/20, 2/15, =A026741(n+1)/A045896(n+1),
0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495 =a(n)/b(n).

Crossrefs

Cf. A193220 (denominators).

Programs

  • Mathematica
    a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); Table[a[3, k], {k, 0, 50}] // Numerator (* Jean-François Alcover, Sep 19 2012 *)

A208950 a(4*n) = n*(16*n^2-1)/3, a(2*n+1) = n*(n+1)*(2*n+1)/6, a(4*n+2) = (4*n+1)*(4*n+2)*(4*n+3)/6.

Original entry on oeis.org

0, 0, 1, 1, 5, 5, 35, 14, 42, 30, 165, 55, 143, 91, 455, 140, 340, 204, 969, 285, 665, 385, 1771, 506, 1150, 650, 2925, 819, 1827, 1015, 4495, 1240, 2728, 1496, 6545, 1785, 3885, 2109, 9139, 2470, 5330, 2870, 12341, 3311, 7095, 3795, 16215, 4324
Offset: 0

Views

Author

Paul Curtz, Mar 03 2012

Keywords

Comments

a(n+2) is divisible by A060819(floor(n/3)).
a(n) is divisible by A176672(floor(n/3)).
Denominator of a(n)/n is of period 24: 1,1,3,4,1,6,1,4,3,1,1,12,1,2,3,4,1,3,1,4,3,2,1,12 (two successive palindromes).
This is the fifth column of the triangle A107711, hence the formula involving gcd(n+2,4) given below follows. - Wolfdieter Lang, Feb 24 2014

Crossrefs

Programs

  • Magma
    [Binomial(n+1,3)*GCD(n+2,4)/4: n in [0..50]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(x^2 + x^3 + 5 x^4 + 5 x^5 + 31 x^6 + 10 x^7 + 22 x^8 + 10 x^9 + 31 x^10 + 5 x^11 + 5 x^12 + x^13 + x^14)/((1 - x)^4 (1 + x)^4 (1 + 4 x^2 + 6 x^4 + 4 x^6 + x^8)), {x, 0, 47}], x] (* Bruno Berselli, Mar 11 2012 *)
  • Maxima
    A208950(n) := block(
            [a,npr] ,
            if equal(mod(n,4), 0) then (
                    a : n/12*(n^2-1)
            ) else if equal(mod(n,2),0) then (
                    a : (n-1)*n*(n+1)/6
            ) else (
                    npr : (n-1)/2,
                    a : npr*(npr+1)*n/6
            ) ,
            return(a)
    )$ /* R. J. Mathar, Mar 10 2012 */
    
  • PARI
    vector(50, n, n--; binomial(n+1,3)*gcd(n+2,4)/4) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n+1) = A002415(n+1)/A145979(n-1).
a(n) = A051724(n-1) * A051724(n) * A051724(n+1).
a(n) = A060819(n-1) * A060819(n) * A060819(n+1) / 3.
a(n) * a(n+4) = A061037(n+1) * A061037(n+2) * A061037(n+3) / 9.
a(n) = A138190(n)/A000034(n) for n > 0.
a(n) = A000292(n-1)/A176895(n+2) for n > 0.
a(n)/a(n+4) = n*(n^2-1)/((n+3)*(n+4)*(n+5)).
a(n)/a(n+12) = (n-1)*n*(n+1)/((n+11)*(n+12)*(n+13)).
G.f.: (x^2 + x^3 + 5*x^4 + 5*x^5 + 31*x^6 + 10*x^7 + 22*x^8 + 10*x^9 + 31*x^10 + 5*x^11 + 5*x^12 + x^13 + x^14) / ((1-x)^4*(1+x)^4*(1 + 4*x^2 + 6*x^4 + 4*x^6 + x^8)). - R. J. Mathar, Mar 10 2012
From Wolfdieter Lang, Feb 24 2014: (Start)
G.f.: (1 + x^12 + x*(1+x^10) + 5*x^2*(1+x^8) + 5*x^3*(1+x^7) + 31*x^4*(1+x^4) + 10*x^5*(1+x^2) + 22*x^6)/(1-x^4)^4. This is the preceding g.f. rewritten.
a(n) = binomial(n+1,3)*gcd(n+2,4)/4, n >= 0. From the g.f., see a comment above on A107711. (End)
a(n) = (n*(n-1)*((n+1)*(4+2*(-1)^n + (1+(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))))/48. - Luce ETIENNE, Jan 01 2015
Sum_{n>=2} 1/a(n) = 12 - 27*log(2)/2. - Amiram Eldar, Aug 12 2022

A100652 Denominator of 1 - Sum_{i=1..n} |Bernoulli(i)|.

Original entry on oeis.org

1, 2, 3, 3, 10, 10, 105, 105, 70, 70, 1155, 1155, 1430, 1430, 2145, 2145, 24310, 24310, 4849845, 4849845, 58786, 58786, 2028117, 2028117, 965770, 965770, 1448655, 1448655, 28007330, 28007330, 100280245065, 100280245065, 66853496710, 66853496710, 100280245065
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2004

Keywords

Comments

Contribution from Paul Curtz, Aug 07 2012 (Start):
Take a(0)=1. Then instead of the Akiyama-Tanigawa algorithm we create the extended (or prolonged) Akiyama-Tanigawa algorithm using A028310(n)=1,1,2,3,4,5,... instead of A000027(n)=1,2,3,4,5,.. .
Hence the array (A051714 with an additional column)
2, 1, 1/2, 1/3, 1/4,
1, 1/2, 1/3, 1/4, 1/5,
1/2, 1/6, 1/6, 3/20, 2/15, A026741(n+1)/A045896(n+1)
1/3, 0, 1/30, 1/20, 2/35, A194531(n)/A193220(n)
1/3, -1/30, -1/30, -3/140, -1/105. A051722(n)/A051723(n).
a(n) is the denominator of the (first) column before the Akiyama-Tanigawa algorithm leading to the second Bernoulli numbers A164555(n)/A027642(n). See A176672(n).
(End)

Examples

			1, 1/2, 1/3, 1/3, 3/10, 3/10, 29/105, 29/105, 17/70, 17/70, 193/1155, 193/1155, -123/1430, -123/1430, -2687/2145, -2687/2145, -202863/24310, -202863/24310, -307072861/4849845, ... = A100651/A100652.
		

Programs

  • Mathematica
    Denominator[1-(Accumulate[Abs[BernoulliB[Range[0,40]]]])] (* Harvey P. Dale, Jan 28 2013 *)

A178370 The trisection A178242(3n+2).

Original entry on oeis.org

7, 25, 26, 44, 133, 187, 125, 161, 403, 493, 296, 350, 817, 943, 539, 611, 1375, 1537, 854, 944, 2077, 2275, 1241, 1349, 2923, 3157, 1700, 1826, 3913, 4183, 2231, 2375, 5047, 5353, 2834, 2996, 6325, 6667, 3509, 3689, 7747, 8125, 4256, 4454, 9313, 9727, 5075, 5291
Offset: 0

Views

Author

Paul Curtz, Dec 21 2010

Keywords

Comments

For n = 0, 1, 2, 3, 4, 5, 6, 7, ...,
a(n-1) = -1, 7, 25, 26, 44, 133, 187, 125, ...
+ A177049(n) = 1, 5, 14, 55, 91, 68, 95, 253, ...
gives 0, 12, 39, 81, 135, 201, 282, 378, ...
which are increasing multiples of 3.
a(n) mod 9 = period 4: repeat 7,7,8,8.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) )); // G. C. Greubel, Feb 26 2020
    
  • Maple
    m:=50; S:=series((7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 26 2020
  • Mathematica
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1}, {7,25,26,44,133,187,125,161,403}, 50] (* Harvey P. Dale, May 21 2015 *)
  • PARI
    Vec( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) +O('x^50) ) \\ G. C. Greubel, Feb 26 2020
    
  • Sage
    def A178370_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) ).list()
    A178370_list(50) # G. C. Greubel, Feb 26 2020

Formula

a(n) = A060819(2+3*n)*(A060819(7+3*n) + A176672(n+2))/2. - corrected by G. C. Greubel, Feb 26 2020
G.f.: (7 +4*x -7*x^2 +46*x^3 -9*x^4 +8*x^5 +4*x^6 +2*x^7 -x^8)/((1-x)^3 * (1 + x^2)^3 ). - R. J. Mathar, Jan 16 2011
From G. C. Greubel, Feb 26 2020: (Start)
a(n) = (6 + i^n*(1 - i + (-1)^n*(1 + i)))*(9*n^2 + 27*n + 14)/16.
E.g.f.: ( 3*(14+36*x+9*x^2)*exp(x) + (14+36*x-9*x^2)*cos(x) + (14-36*x-9*x^2)*sin(x) )/8. (End)
Sum_{n>=0} 1/a(n) = 1 - (3 + 4*sqrt(3))*Pi/45. - Amiram Eldar, Aug 12 2022

Extensions

More terms from Jinyuan Wang, Feb 26 2020

A302773 Numerators of (3*n + 2)/12.

Original entry on oeis.org

1, 5, 2, 11, 7, 17, 5, 23, 13, 29, 8, 35, 19, 41, 11, 47, 25, 53, 14, 59, 31, 65, 17, 71, 37, 77, 20, 83, 43, 89, 23, 95, 49, 101, 26, 107, 55, 113, 29, 119, 61, 125, 32, 131, 67, 137, 35, 143, 73, 149, 38, 155, 79, 161, 41, 167, 85, 173, 44, 179, 91, 185, 47, 191, 97
Offset: 0

Views

Author

Bruno Berselli, Apr 13 2018

Keywords

Comments

Or numerators of (3*n+2)/4. - Altug Alkan, Apr 17 2018

Crossrefs

Cf. A060819: numerators of n/4, with n > 0.
Cf. A176672: numerators of (3*n + 1)/12.
First bisection is A165355; second bisection is A016969.

Programs

  • GAP
    List([0..70], n -> NumeratorRat((3*n+2)/12));
    
  • Magma
    [Numerator((3*n+2)/12): n in [0..70]];
  • Mathematica
    Table[Numerator[(3 n + 2)/12], {n, 0, 70}]
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{1,5,2,11,7,17,5,23},80] (* Harvey P. Dale, Feb 04 2021 *)
  • PARI
    vector(70, n, n--; numerator((3*n+2)/12))
    
  • PARI
    Vec((1 + 5*x + 2*x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Apr 16 2018
    
  • Sage
    [numerator((3*n+2)/12) for n in (0..70)]
    

Formula

G.f.: (1 + 5*x + 2*x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8).
a(n) = (3*n + 2)*(((-1)^n + 1)*(i^(n*(n+1)) - 5) + 16)/16, where i = sqrt(-1).
a(n) = A016789(n)/A109008(n+2).
Showing 1-5 of 5 results.