cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A176683 Numbers k such that k^2 +-11 are primes.

Original entry on oeis.org

90, 120, 210, 270, 300, 510, 690, 720, 780, 960, 1200, 2190, 4260, 4350, 4470, 4920, 4980, 5040, 5100, 5250, 5550, 5670, 5730, 5790, 6810, 8100, 8280, 8490, 8610, 9150, 9540, 9990, 10140, 10200, 10650, 11130, 11430, 12060, 12510, 12930, 13770, 13800
Offset: 1

Views

Author

Keywords

Examples

			90 is in the sequence, because 90^2 - 11 = 8089 and 90^2 + 11 = 8111 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[8! ],PrimeQ[ #^2-11]&&PrimeQ[ #^2+11]&]
    Select[Range[14000],AllTrue[#^2+{11,-11},PrimeQ]&] (* Harvey P. Dale, Aug 03 2024 *)

A176684 Numbers k such that k^3 +-5 are primes.

Original entry on oeis.org

2, 12, 48, 66, 78, 126, 192, 324, 576, 738, 858, 1806, 2466, 2496, 2688, 3186, 3276, 3978, 4092, 4248, 4404, 4884, 5034, 5274, 5352, 5898, 6018, 6198, 6396, 6408, 6516, 6708, 6852, 7368, 7914, 8304, 8628, 8658, 8904, 9048, 9168, 9528, 10812, 10932
Offset: 1

Views

Author

Keywords

Examples

			12 is in the sequence, because 12^3 - 5 = 1723 and 12^3 + 5 = 1733 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[8! ],PrimeQ[ #^3-5]&&PrimeQ[ #^3+5]&]

A176685 Numbers k such that k^3 +-7 are primes.

Original entry on oeis.org

36, 114, 174, 264, 426, 444, 810, 894, 900, 2724, 3876, 4140, 4386, 4446, 4686, 4884, 5910, 5940, 6240, 6294, 6534, 6624, 7044, 7206, 7314, 7326, 7470, 8076, 8676, 9120, 9216, 9270, 9546, 9900, 10926, 11040, 11934, 12114, 12510, 14004, 14034, 14100
Offset: 1

Views

Author

Keywords

Examples

			36 is in the sequence, because 36^3 - 7 = 46649 and 36^3 + 7 = 46663 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[8! ],PrimeQ[ #^3-7]&&PrimeQ[ #^3+7]&]
    Select[Range[15000],AllTrue[#^3+{7,-7},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 28 2020 *)

A248738 Least number m such that both m^2 -/+ prime(n) are (positive) primes.

Original entry on oeis.org

3, 4, 6, 6, 90, 4, 6, 30, 6, 180, 6, 12, 30, 18, 12, 48, 60, 90, 24, 30, 18, 120, 12, 510, 10, 60, 36, 12, 60, 12, 12, 30, 12, 12, 30, 120, 24, 48, 18, 48, 690, 1020, 30, 14, 18, 420, 180, 18, 36, 540, 42, 1230, 150, 870, 36, 18, 330, 870, 18, 30, 18, 18, 18, 150, 30, 18, 30, 30, 60, 180, 24, 30, 36
Offset: 1

Views

Author

Zak Seidov, Oct 13 2014

Keywords

Examples

			a(1)=3 because p=prime(1)=2 and both P=3^2-2=7 and Q=3^2+2=11 are prime;
a(3)=6 because p=5 and both P=31 and Q=41 are prime;
a(10000)=510 because p=104729 and both P=155371 and Q=364829 are prime.
		

Crossrefs

Programs

  • Mathematica
    lnm[n_]:=Module[{m=2,pr=Prime[n]},If[m^2-pr<0,m=Ceiling[Sqrt[pr]]];While[ !AllTrue[m^2+{pr,-pr},PrimeQ],m++];m]; Array[lnm,80] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 22 2014 *)
  • PARI
    a(n) = { p = prime(n); m = sqrtint(p); until( isprime(m^2-p) && isprime(m^2+p), m++); m} \\ Michel Marcus, Oct 13 2014
Showing 1-4 of 4 results.