cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176687 Numbers k such that k^2-1 is the product of 4 distinct primes.

Original entry on oeis.org

34, 56, 86, 92, 94, 104, 106, 142, 144, 160, 164, 166, 184, 186, 194, 196, 202, 204, 214, 216, 218, 220, 230, 232, 236, 248, 256, 266, 272, 284, 300, 302, 304, 320, 322, 328, 340, 346, 358, 384, 392, 394, 398, 400, 412, 414, 416, 430, 434, 446, 452, 456, 464
Offset: 1

Views

Author

Keywords

Examples

			34 is in the sequence, because 34^2 - 1 = 1155 = 3 * 5 * 7 * 11, so it's a product of 4 distinct primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7! ],Last/@FactorInteger[ #^2-1]=={1,1,1,1}&]
    dp4Q[n_]:=Module[{c=n^2-1},PrimeNu[c]==PrimeOmega[c]==4]; Select[Range[ 500], dp4Q] (* Harvey P. Dale, Dec 31 2013 *)

A272078 Numbers k such that k^2 + 1 is product of 3 distinct primes.

Original entry on oeis.org

13, 17, 21, 23, 27, 31, 33, 37, 53, 55, 63, 67, 72, 75, 77, 81, 87, 89, 91, 97, 98, 103, 105, 109, 111, 112, 113, 115, 119, 122, 125, 127, 128, 129, 135, 137, 138, 142, 147, 148, 149, 151, 153, 155, 161, 162, 163, 167, 172, 174, 179, 185, 189, 192, 197, 200, 208
Offset: 1

Views

Author

K. D. Bajpai, Apr 19 2016

Keywords

Examples

			13 appears in the list because 13^2 + 1 = 170 = 2 * 5 * 17.
21 appears in the list because 21^2 + 1 = 442 = 2 * 13 * 17.
		

Crossrefs

Programs

  • Mathematica
    A272078 = {}; Do[ k = Last /@ FactorInteger[n^2 + 1]; If[k == {1, 1, 1}, AppendTo[A272078, n]], {n, 1000}]; A272078
    Select[Range[1000], Last /@ FactorInteger[#^2 + 1] == {1, 1, 1} &]
  • PARI
    isok(k) = my(x=k^2+1); (omega(x)==3) && (bigomega(x)==3); \\ Michel Marcus, Mar 11 2020
Showing 1-2 of 2 results.