A176700
Triangle T(n,m) = 2+A176697(n)-A176697(m)-A176697(n-m) read along rows 0<=m<=n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 14, 16, 14, 1, 1, 44, 55, 55, 44, 1, 1, 146, 187, 196, 187, 146, 1, 1, 504, 647, 686, 686, 647, 504, 1, 1, 1786, 2287, 2428, 2458, 2428, 2287, 1786, 1, 1, 6449, 8232, 8731, 8863, 8863, 8731, 8232, 6449, 1, 1, 23635, 30081, 31862, 32352
Offset: 0
1;
1, 1;
1, 3, 1;
1, 5, 5, 1;
1, 14, 16, 14, 1;
1, 44, 55, 55, 44, 1;
1, 146, 187, 196, 187, 146, 1;
1, 504, 647, 686, 686, 647, 504, 1;
1, 1786, 2287, 2428, 2458, 2428, 2287, 1786, 1;
1, 6449, 8232, 8731, 8863, 8863, 8731, 8232, 6449, 1;
1, 23635, 30081, 31862, 32352, 32454, 32352, 31862, 30081, 23635, 1;
-
A176700 :=proc(n,k)
2+A176697(n)-A176697(k)-A176697(n-k) ;
end proc: # R. J. Mathar, Jun 17 2015
-
a[0] := 1; a[1] := 1;a[2]=3
a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];
t[n_, m_] := 2 + (-a[m] - a[n - m] + a[n]);
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]
A366676
G.f. satisfies A(x) = 1 + x^3 + x*A(x)^3.
Original entry on oeis.org
1, 1, 3, 13, 58, 288, 1512, 8250, 46296, 265491, 1548976, 9165156, 54865737, 331694167, 2022232068, 12419023617, 76755164643, 477049187268, 2979758649996, 18695276174079, 117766227611046, 744527923478730, 4722464911515423, 30044091589750350
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*(n-3*k)+1, k)*binomial(3*(n-3*k), n-3*k)/(2*(n-3*k)+1));
A367041
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^4.
Original entry on oeis.org
1, 1, 5, 26, 168, 1195, 8988, 70318, 566388, 4665221, 39113732, 332691758, 2863778072, 24900264326, 218372530380, 1929363592870, 17157018725000, 153442147343648, 1379250344938676, 12453816724761706, 112907775890596400, 1027394297869071687
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*(n-2*k)+1, k)*binomial(4*(n-2*k), n-2*k)/(3*(n-2*k)+1));
A367040
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.
Original entry on oeis.org
1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));
A367042
G.f. satisfies A(x) = 1 + x^3 + x*A(x)^2.
Original entry on oeis.org
1, 1, 2, 6, 16, 48, 152, 500, 1688, 5816, 20368, 72288, 259424, 939808, 3432192, 12622416, 46706144, 173762016, 649569216, 2438748864, 9191656192, 34765298944, 131912452864, 501987944832, 1915417307392, 7326620001536, 28088736525824, 107913607531520
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-3*k+1, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
A366677
G.f. satisfies A(x) = 1 + x^4 + x*A(x)^4.
Original entry on oeis.org
1, 1, 4, 22, 141, 973, 7112, 54040, 422552, 3377770, 27478568, 226753828, 1893462584, 15969598554, 135842638632, 1164075017512, 10039732285528, 87081507756245, 759128176746864, 6647475055207618, 58445784269830824, 515745587816906733
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(3*(n-4*k)+1, k)*binomial(4*(n-4*k), n-4*k)/(3*(n-4*k)+1));
A176701
A polynomial coefficient triangle sequence:a(n)=vector(a(n-1)).Reverse(vector(a(n-1));a(0)=1;a(1)=1;a[2]=3;p(x,n)=Sum[a(m)*m!*Binomial[x, m], {m, 0, n}].
Original entry on oeis.org
1, 1, 1, 1, -2, 3, 1, 12, -18, 7, 1, -108, 202, -113, 20, 1, 1404, -2948, 2092, -610, 63, 1, -23556, 54044, -44708, 17070, -3057, 208, 1, 488364, -1200160, 1109956, -505515, 121368, -14723, 711, 1, -12091476, 31417568, -31667516, 16389909, -4770792
Offset: 0
{1},
{1, 1},
{1, -2, 3},
{1, 12, -18, 7},
{1, -108, 202, -113, 20},
{1, 1404, -2948, 2092, -610, 63},
{1, -23556, 54044, -44708, 17070, -3057, 208},
{1, 488364, -1200160, 1109956, -505515, 121368, -14723, 711},
{ 1, -12091476, 31417568, -31667516, 16389909, -4770792, 788989, -69177, 2496},
{1, 348530604, -948701728, 1024833540, -585398187, 196013064, -39780995, 4814247, -319488, 8944},
{1, -11473374036, 32495091200, -37179387060, 22990648853, -8578056786, 2021526799, -303047853, 28023372, -1457066, 32578}
-
a[0] := 1; a[1] := 1;a[2]=3
a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];
p[x_, n_] := Sum[a[m]*m!*Binomial[x, m], {m, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
Showing 1-7 of 7 results.
Comments