A177025 Number of ways to represent n as a polygonal number.
1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 3, 1, 1, 2, 3
Offset: 3
Keywords
References
- J. J. Tattersall, Elementary Number Theory in Nine chapters, 2nd ed (2005), Cambridge Univ. Press, page 22 Problem 26, citing Wertheim (1897)
Links
- T. D. Noe, Table of n, a(n) for n = 3..10000
- E. Deza and M. Deza, Figurate Numbers, World Scientific, 2012; see p. 45.
Crossrefs
Programs
-
Maple
A177025 := proc(p) local ii,a,n,s,m ; ii := 2*p ; a := 0 ; for n in numtheory[divisors](ii) do if n > 2 then s := ii/n ; if (s-2) mod (n-1) = 0 then a := a+1 ; end if; end if; end do: return a; end proc: # R. J. Mathar, Jan 10 2013
-
Mathematica
nn = 100; t = Table[0, {nn}]; Do[k = 2; While[p = k*((n - 2) k - (n - 4))/2; p <= nn, t[[p]]++; k++], {n, 3, nn}]; t (* T. D. Noe, Apr 13 2011 *) Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]] - 1, {n, 3, 100}] (* Jonathan Sondow, May 09 2014 *)
-
PARI
a(n) = sum(i=3, n, ispolygonal(n, i)); \\ Michel Marcus, Jul 08 2014
-
Python
from sympy import divisors def a(n): i=2*n x=0 for d in divisors(i): if d>2: s=i/d if (s - 2)%(d - 1)==0: x+=1 return x # Indranil Ghosh, Apr 28 2017, translated from Maple code by R. J. Mathar
Formula
a(n) = A129654(n) - 1.
G.f.: x * Sum_{k>=2} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020
Extensions
Extended by R. J. Mathar, Aug 15 2010
Comments