cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177002 Period 4: repeat [1, 2, 4, 2].

Original entry on oeis.org

1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2, 1, 2
Offset: 0

Views

Author

Paul Curtz, Dec 08 2010

Keywords

Comments

Also the decimal expansion of 138/1111 and the continued fractions of (5+3*sqrt(10))/10 or (6*sqrt(10)-10)/13. - R. J. Mathar, Dec 13 2010

Crossrefs

Cf. A174882.

Programs

Formula

a(n) = | A174882(n+1) / A174882(n) |.
G.f.: (1+2*x+4*x^2+2*x^3)/((1-x)*(1+x)*(x^2+1)). - R. J. Mathar, Dec 13 2010
a(n) = 2+(1+(-1)^n)*(1-3*I^n)/4. - Bruno Berselli, Mar 15 2011
a(n) = a(n-1) * a(n-3) / a(n-2) for n>2. - Bruno Berselli, Feb 04 2013
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = (9 + cos(n*Pi) - 6*cos(n*Pi/2))/4. (End)