cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227316 a(n) = n(n+1) if n == 0 or 1 (mod 4), otherwise a(n) = n(n+1)/2.

Original entry on oeis.org

0, 2, 3, 6, 20, 30, 21, 28, 72, 90, 55, 66, 156, 182, 105, 120, 272, 306, 171, 190, 420, 462, 253, 276, 600, 650, 351, 378, 812, 870, 465, 496, 1056, 1122, 595, 630, 1332, 1406, 741, 780, 1640, 1722, 903, 946, 1980, 2070, 1081, 1128
Offset: 0

Views

Author

Paul Curtz, Jul 06 2013

Keywords

Examples

			a(0) = 2*0 = 0, a(1) = 2*1 = 2, a(2) = 1*3 = 3, a(3) = 1*6 = 6, a(4) = 2*10 = 20.
		

Crossrefs

Cf. A000217, A002378, A130658, A169642 (first bisection), A176743, A109043, A227380.

Programs

  • Magma
    [(3+(-1)^Floor(n/2))*n*(n+1)/4: n in [0..50]]; // Bruno Berselli, Jul 10 2013
  • Mathematica
    a[n_] := n*(n+1)/4*GCD[n-1, 4]*GCD[n, 4]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 10 2013 *)
    Table[If[Mod[n,4]<2,n(n+1),(n(n+1))/2],{n,0,50}] (* or *) LinearRecurrence[ {3,-6,10,-12,12,-10,6,-3,1},{0,2,3,6,20,30,21,28,72},50] (* Harvey P. Dale, Aug 26 2016 *)

Formula

a(n) = A130658(n+2)*A000217(n), a(-n-1) = A130658(n)*A000217(n).
a(2n) = A169642(n), a(2n+1) = 2*(2*n+1)*A026741(n+1).
a(n) = A176743(n-2)*A176743(n-1).
a(n) = A177002(n+2)*A064038(n+1).
a(n) = 3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*(n-6) +6*(n-7) -3*a(n-8) +a(n-9) = 3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: x*(2-3*x+9*x^2+3*x^5+x^6)/((1-x)^3*(1+x^2)^3). - Bruno Berselli, Jul 10 2013
a(n) = (3+(-1)^floor(n/2))*n*(n+1)/4. - Bruno Berselli, Jul 10 2013
Sum_{n>=1} 1/a(n) = 1 + log(2)/2. - Amiram Eldar, Aug 12 2022

A227168 a(n) = gcd(2*n, n*(n+1)/2)^2.

Original entry on oeis.org

1, 1, 36, 4, 25, 9, 196, 16, 81, 25, 484, 36, 169, 49, 900, 64, 289, 81, 1444, 100, 441, 121, 2116, 144, 625, 169, 2916, 196, 841, 225, 3844, 256, 1089, 289, 4900, 324, 1369, 361, 6084, 400
Offset: 1

Views

Author

Paul Curtz, Jul 03 2013

Keywords

Comments

a(n) is defined as A062828(n)^2 for n >= 1. If we extend the sequence to n=0 and negative n by use of the recurrence that relates a(n) to a(n+12), a(n+8) and a(n+4), we obtain a(0)=0, a(-1)=4 and a(-n) = A176743(n-2)^2 for n >= 2.
Define c(n) = a(n+2) - a(n-2) for c >= 0. Because a(n) is a shuffle of three interleaved 2nd-order polynomials, c(n) is a shuffle of three interleaved 1st-order polynomials: c(n) = 4* A062828(n)*(periodically repeated 1, 8, 1, 1).
The sequence a(n) is case p=0 of the family A062828(n)*A062828(n+p):
0, 1, 1, 36, 4, 25, 9, 196, ... = a(n).
0, 1, 6, 12, 10, 15, 42, 56, ... = A130658(n)*A000217(n) = A177002(n-1)*A064038(n+1).
0, 6, 2, 30, 6, 70, 12, 126, ... = 2*A198148(n)
0, 2, 5, 18, 28, 20, 27, 70, ... = A177002(n+2)*A160050(n+1) = A014695(n+2)*A000096(n).

Crossrefs

Programs

Formula

a(n) = A062828(n)^2.
a(4n) = (4*n+1)^2; a(2n+1) = (n+1)^2; a(4n+2) = 4*(4*n+3)^2.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) * (period 4: repeat 4, 1, 1, 4) = A061038(n).
A005565(n-3) = a(n+1) * A061037(n). - Corrected by R. J. Mathar, Jul 25 2013
a(n) = A130658(n-1)^2 * A181318(n). - Corrected by R. J. Mathar, Aug 01 2013
G.f.: -x*(1 + x + 36*x^2 + 4*x^3 + 22*x^4 + 6*x^5 + 88*x^6 + 4*x^7 + 9*x^8 + x^9 + 4*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Jul 20 2013
Sum_{n>=1} 1/a(n) = 47*Pi^2/192 + 3*G/8, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022
Showing 1-2 of 2 results.