cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010887 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007
1371742/11111111 = 0.123456781234567812345678... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - Klaus Brockhaus, May 01 2010

Programs

  • Haskell
    a010887 = (+ 1) . flip mod 8
    a010887_list = cycle [1..8]
    -- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014
    
  • Mathematica
    PadRight[{},90,Range[8]] (* Harvey P. Dale, May 10 2022 *)
  • Python
    def A010887(n): return 1 + (n & 7) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
Also a(n) = A010877(n) + 1.
G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)

A177933 Decimal expansion of (232405+sqrt(71216963807))/348378.

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 2, 2, 9, 1, 1, 3, 0, 6, 9, 3, 4, 5, 3, 5, 5, 4, 9, 7, 5, 2, 3, 5, 5, 5, 7, 3, 6, 9, 3, 4, 0, 0, 8, 4, 0, 6, 9, 9, 9, 7, 1, 4, 6, 6, 5, 9, 6, 4, 6, 7, 0, 3, 1, 7, 6, 1, 3, 7, 8, 0, 1, 6, 6, 3, 2, 3, 6, 8, 1, 2, 3, 2, 5, 7, 5, 9, 2, 8, 7, 6, 3, 6, 4, 5, 9, 6, 2, 1, 6, 8, 8, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of (232405+sqrt(71216963807))/348378 is A010889.
Agrees with A060997 for n < 14, with A177270 for n < 13, with A177034 for n < 11, with A177160 for n < 9.

Examples

			(232405+sqrt(71216963807))/348378 = 1.43312742672229113069...
		

Crossrefs

Cf. A177934 (decimal expansion of sqrt(71216963807)), A010889 (repeat 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), A060997 (decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...), A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802), A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165), A177160 (decimal expansion of (4502+sqrt(29964677))/6961).

Programs

  • Mathematica
    First[RealDigits[(232405+Sqrt[71216963807])/348378,10,120]] (* Paolo Xausa, Jan 09 2024 *)

A177035 Decimal expansion of sqrt(13493990).

Original entry on oeis.org

3, 6, 7, 3, 4, 1, 6, 6, 6, 5, 7, 2, 1, 4, 3, 7, 0, 5, 1, 3, 6, 6, 9, 3, 6, 1, 5, 1, 9, 2, 0, 9, 7, 7, 4, 5, 9, 8, 4, 5, 4, 1, 6, 4, 1, 0, 5, 9, 3, 4, 2, 3, 5, 3, 2, 4, 9, 6, 8, 0, 7, 4, 3, 0, 1, 6, 2, 4, 1, 9, 7, 3, 8, 8, 0, 7, 0, 9, 6, 9, 5, 4, 7, 0, 3, 5, 4, 9, 9, 2, 6, 8, 7, 7, 3, 9, 0, 7, 4, 2, 8, 7, 9, 9, 2
Offset: 4

Views

Author

Klaus Brockhaus, May 01 2010

Keywords

Comments

Continued fraction expansion of sqrt(13493990) is 3673 followed by (repeat 2, 2, 2, 7346).
sqrt(13493990) = sqrt(2)*sqrt(5)*sqrt(19)*sqrt(29)*sqrt(31)*sqrt(79).

Examples

			sqrt(13493990) = 3673.41666572143705136693...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002163 (decimal expansion of sqrt(5)), A010475 (decimal expansion of sqrt(19)), A010484 (decimal expansion of sqrt(29)), A010486 (decimal expansion of sqrt(31)), A010531 (decimal expansion of sqrt(79)), A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165).

Programs

  • Mathematica
    RealDigits[Sqrt[13493990],10,120][[1]] (* Harvey P. Dale, Nov 11 2016 *)
Showing 1-3 of 3 results.