cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A178370 The trisection A178242(3n+2).

Original entry on oeis.org

7, 25, 26, 44, 133, 187, 125, 161, 403, 493, 296, 350, 817, 943, 539, 611, 1375, 1537, 854, 944, 2077, 2275, 1241, 1349, 2923, 3157, 1700, 1826, 3913, 4183, 2231, 2375, 5047, 5353, 2834, 2996, 6325, 6667, 3509, 3689, 7747, 8125, 4256, 4454, 9313, 9727, 5075, 5291
Offset: 0

Views

Author

Paul Curtz, Dec 21 2010

Keywords

Comments

For n = 0, 1, 2, 3, 4, 5, 6, 7, ...,
a(n-1) = -1, 7, 25, 26, 44, 133, 187, 125, ...
+ A177049(n) = 1, 5, 14, 55, 91, 68, 95, 253, ...
gives 0, 12, 39, 81, 135, 201, 282, 378, ...
which are increasing multiples of 3.
a(n) mod 9 = period 4: repeat 7,7,8,8.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) )); // G. C. Greubel, Feb 26 2020
    
  • Maple
    m:=50; S:=series((7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 26 2020
  • Mathematica
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1}, {7,25,26,44,133,187,125,161,403}, 50] (* Harvey P. Dale, May 21 2015 *)
  • PARI
    Vec( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) +O('x^50) ) \\ G. C. Greubel, Feb 26 2020
    
  • Sage
    def A178370_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) ).list()
    A178370_list(50) # G. C. Greubel, Feb 26 2020

Formula

a(n) = A060819(2+3*n)*(A060819(7+3*n) + A176672(n+2))/2. - corrected by G. C. Greubel, Feb 26 2020
G.f.: (7 +4*x -7*x^2 +46*x^3 -9*x^4 +8*x^5 +4*x^6 +2*x^7 -x^8)/((1-x)^3 * (1 + x^2)^3 ). - R. J. Mathar, Jan 16 2011
From G. C. Greubel, Feb 26 2020: (Start)
a(n) = (6 + i^n*(1 - i + (-1)^n*(1 + i)))*(9*n^2 + 27*n + 14)/16.
E.g.f.: ( 3*(14+36*x+9*x^2)*exp(x) + (14+36*x-9*x^2)*cos(x) + (14-36*x-9*x^2)*sin(x) )/8. (End)
Sum_{n>=0} 1/a(n) = 1 - (3 + 4*sqrt(3))*Pi/45. - Amiram Eldar, Aug 12 2022

Extensions

More terms from Jinyuan Wang, Feb 26 2020
Showing 1-1 of 1 results.