cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177073 a(n) = (9*n+4)*(9*n+5).

Original entry on oeis.org

20, 182, 506, 992, 1640, 2450, 3422, 4556, 5852, 7310, 8930, 10712, 12656, 14762, 17030, 19460, 22052, 24806, 27722, 30800, 34040, 37442, 41006, 44732, 48620, 52670, 56882, 61256, 65792, 70490, 75350, 80372, 85556, 90902, 96410, 102080, 107912, 113906, 120062
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 81*A002061(n+1) - 61. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

  • Magma
    [(9*n+4)*(9*n+5): n in [0..50]]; // Vincenzo Librandi, Apr 08 2013
    
  • Mathematica
    f[n_] := Module[{c = 9n}, (c+4)(c+5)]; Array[f, 40, 0] (* or *) LinearRecurrence[{3, -3, 1}, {20, 182, 506}, 40] (* Harvey P. Dale, Jun 24 2011 *)
  • PARI
    a(n)=(9*n+4)*(9*n+5) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with n > 0, a(0)=20.
From Harvey P. Dale, Jun 24 2011: (Start)
a(0)=20, a(1)=182, a(2)=506, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -2*(x*(10*x+61)+10)/(x-1)^3. (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017209(n)*A017221(n).
Sum_{n>=0} 1/a(n) = tan(Pi/18)*Pi/9.
Product_{n>=0} (1 - 1/a(n)) = sec(Pi/18)*cos(sqrt(5)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = sec(Pi/18)*cosh(sqrt(3)*Pi/18). (End)
E.g.f.: exp(x)*(20 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024

Extensions

Edited by N. J. A. Sloane, Jun 22 2010