A177221 Numbers k that are the products of two distinct primes such that 2*k + 1 is also the product of two distinct primes.
10, 34, 38, 46, 55, 57, 77, 91, 93, 106, 118, 123, 129, 133, 143, 145, 159, 161, 177, 185, 201, 203, 205, 206, 213, 218, 226, 235, 259, 267, 291, 295, 298, 305, 314, 327, 334, 335, 339, 358, 365, 377, 381, 394, 395, 403, 407, 415, 417, 446, 447, 458, 466, 469
Offset: 1
Keywords
Examples
10 is in the sequence because 10 = 2*5 and 2*10+1 = 21 = 3*7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
isA006881:= proc(n) local F; F:= ifactors(n)[2]; nops(F)=2 and F[1, 2]+F[2, 2]=2 end proc: filter:= n -> andmap(isA006881, [n, 2*n+1]); select(filter, [$1..1000]); # Robert Israel, Nov 09 2017
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n+1],AppendTo[lst,n]],{n,0,3*6!}];lst Select[Range[500],PrimeNu[#]==PrimeOmega[#]==PrimeNu[2#+1] == PrimeOmega[ 2#+1] == 2&] (* Harvey P. Dale, Feb 22 2018 *)
Comments