A177833 Numbers k such that k^2 - 13 and k^2 + 13 are primes.
4, 12, 18, 72, 84, 114, 198, 354, 378, 588, 612, 618, 864, 912, 948, 1032, 1068, 1134, 1320, 1410, 1428, 1452, 1500, 1830, 1956, 2046, 2058, 2172, 2298, 2448, 2634, 2748, 2844, 2856, 3192, 3246, 3390, 3474, 3846, 3906, 4092, 4182, 4506, 4842, 4884, 4890
Offset: 1
Keywords
Examples
4^2 - 13 = 3 = prime(2), 4^2 + 13 = 29 = prime(10). 12^2 - 13 = 131 = prime(32), 12^2 + 13 = 157 = prime(37). 948^2 - 13 = 898691 = prime(71194), 948^2 + 13 = prime(71195), first case that they are consecutive primes.
References
- J. Matousek and J. Nesetril, Diskrete Mathematik: eine Entdeckungsreise, Springer-Lehrbuch, 2. Aufl., Berlin, 2007
Links
- Zak Seidov, Table of n, a(n) for n = 1..3000
Programs
-
Magma
[n: n in [4..1000]| IsPrime(n^2-13) and IsPrime(n^2+13)]; // Vincenzo Librandi, Nov 30 2010
-
Maple
with(numtheory): A248785:=n->`if`(isprime(n^2-13) and isprime(n^2+13), n, NULL): seq(A248785(n), n=1..10^4); # Wesley Ivan Hurt, Oct 13 2014
-
Mathematica
Select[Range[2,5000,2],AllTrue[#^2+{13,-13},PrimeQ]&] (* Harvey P. Dale, May 28 2024 *)
Extensions
More terms from Vincenzo Librandi, May 16 2010
Name edited by Michel Marcus, Nov 25 2024