cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177890 15-gonal (or pentadecagonal) pyramidal numbers: a(n) = n*(n+1)*(13*n-10)/6.

Original entry on oeis.org

0, 1, 16, 58, 140, 275, 476, 756, 1128, 1605, 2200, 2926, 3796, 4823, 6020, 7400, 8976, 10761, 12768, 15010, 17500, 20251, 23276, 26588, 30200, 34125, 38376, 42966, 47908, 53215, 58900, 64976, 71456, 78353, 85680, 93450, 101676, 110371, 119548, 129220
Offset: 0

Views

Author

Bruno Berselli, Dec 14 2010

Keywords

Comments

Also a(n) = (15-m)*A000292(n-1) + n*(n+1)*((m-2)*n - (m-5))/6 being n*(n+1)*((m-2)*n - (m-5))/6 a m-gonal pyramidal number (1 < m < 15). For m=6, a(n) = 9*A000292(n-1) + A002412(n).
Inverse binomial transform of this sequence: 0, 1, 14, 13, 0, 0 (0 continued).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (thirteenth row of the table).

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(13*n-10)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    I:=[0,1,16,58]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
    
  • Magma
    [n*(n+1)*(13*n-10)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
    
  • Maple
    seq(n*(n+1)*(13*n-10)/6, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    CoefficientList[Series[x*(1+12*x)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    Table[n*(n-1)*(13*n-23)/6, {n,40}] (* G. C. Greubel, Aug 30 2019 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,16,58},40] (* Harvey P. Dale, Dec 21 2022 *)
  • PARI
    vector(40, n, n*(n-1)*(13*n-23)/6) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(13*n-10)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1+12*x)/(1-x)^4.
a(n) = Sum_{i=0..n} A051867(i).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 04 2012
a(n) = Sum_{i=0..n-1} (n-i)*(13*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 42*x + 13*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019