A178138 Apply partial sum operator 4 times to primes.
2, 11, 37, 97, 219, 444, 830, 1454, 2416, 3845, 5901, 8781, 12723, 18008, 24964, 33972, 45472, 59965, 78019, 100273, 127439, 160308, 199754, 246740, 302326, 367673, 444045, 532813, 635457, 753570, 888872, 1043214, 1218584
Offset: 1
Examples
a(15) = 2 + 9 + 26 + 60 + 122 + 225 + 386 + 624 + 962 + 1429 + 2056 + 2880 + 3942 + 5285 + 6956 = 24964 = 2^2 x 79^2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a178138 n = a178138_list !! (n-1) a178138_list = (iterate (scanl1 (+)) a000040_list) !! 4 -- Reinhard Zumkeller, Feb 08 2015
-
Maple
Contribution from R. J. Mathar, Oct 19 2010: (Start) A007504 := proc(n) option remember; add( ithprime(i),i=1..n) ; end proc: A014148 := proc(n) option remember; add( A007504(i),i=1..n) ; end proc: A014150 := proc(n) option remember; add( A014148(i),i=1..n) ; end proc: A178138 := proc(n) option remember; add( A014150(i),i=1..n) ; end proc: seq(A178138(n),n=1..80) ; (End)
-
Mathematica
Nest[Accumulate[#]&,Prime[Range[40]],4] (* Harvey P. Dale, Sep 25 2014 *)
Comments