cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007504 Sum of the first n primes.

Original entry on oeis.org

0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n)^2 - a(n-1)^2 = A034960(n). - Gary Detlefs, Dec 20 2011
This is true. Proof: By definition we have A034960(n) = Sum_{k = (a(n-1)+1)..a(n)} (2*k-1). Since Sum_{k = 1..n} (2*k-1) = n^2, it follows A034960(n) = a(n)^2 - a(n-1)^2, for n > 1. - Hieronymus Fischer, Sep 27 2012 [formulas above adjusted to changed offset of A034960 - Hieronymus Fischer, Oct 14 2012]
Row sums of the triangle in A037126. - Reinhard Zumkeller, Oct 01 2012
Ramanujan noticed the apparent identity between the prime parts partition numbers A000607 and the expansion of Sum_{k >= 0} x^a(k)/((1-x)...(1-x^k)), cf. A046676. See A192541 for the difference between the two. - M. F. Hasler, Mar 05 2014
For n > 0: row 1 in A254858. - Reinhard Zumkeller, Feb 08 2015
a(n) is the smallest number that can be partitioned into n distinct primes. - Alonso del Arte, May 30 2017
For a(n) < m < a(n+1), n > 0, at least one m is a perfect square.
Proof: For n = 1, 2, ..., 6, the proposition is clear. For n > 6, a(n) < ((prime(n) - 1)/2)^2, set (k - 1)^2 <= a(n) < k^2 < ((prime(n) + 1)/2)^2, then k^2 < (k - 1)^2 + prime(n) <= a(n) + prime(n) = a(n+1), so m = k^2 is this perfect square. - Jinyuan Wang, Oct 04 2018
For n >= 5 we have a(n) < ((prime(n)+1)/2)^2. This can be shown by noting that ((prime(n)+1)/2)^2 - ((prime(n-1)+1)/2)^2 - prime(n) = (prime(n)+prime(n-1))*(prime(n)-prime(n-1)-2)/4 >= 0. - Jianing Song, Nov 13 2022
Washington gives an oscillation formula for |a(n) - pi(n^2)|, see links. - Charles R Greathouse IV, Dec 07 2022

References

  • E. Bach and J. Shallit, §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A122989 for the value of Sum_{n >= 1} 1/a(n).

Programs

  • GAP
    P:=Filtered([1..250],IsPrime);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Oct 07 2018
    
  • Haskell
    a007504 n = a007504_list !! n
    a007504_list = scanl (+) 0 a000040_list
    -- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011
    
  • Magma
    [0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]]; // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 after Hasler's change on Mar 05 2014)
    
  • Maple
    s1:=[2]; for n from 2 to 1000 do s1:=[op(s1),s1[n-1]+ithprime(n)]; od: s1;
    A007504 := proc(n)
        add(ithprime(i), i=1..n) ;
    end proc: # R. J. Mathar, Sep 20 2015
  • Mathematica
    Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *)
    primeRunSum = 0; Table[primeRunSum = primeRunSum + Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)
  • PARI
    A007504(n) = sum(k=1,n,prime(k)) \\ Michael B. Porter, Feb 26 2010
    
  • PARI
    a(n) = vecsum(primes(n)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A007504_gen(): return accumulate(prime(n) if n > 0 else 0 for n in count(0))
    A007504_list = list(islice(A007504_gen(),20)) # Chai Wah Wu, Feb 23 2022

Formula

a(n) ~ n^2 * log(n) / 2. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 24 2001 (see Bach & Shallit 1996)
a(n) = A014284(n+1) - 1. - Jaroslav Krizek, Aug 19 2009
a(n+1) - a(n) = A000040(n+1). - Jaroslav Krizek, Aug 19 2009
a(A051838(n)) = A002110(A051838(n)) / A116536(n). - Reinhard Zumkeller, Oct 03 2011
a(n) = min(A068873(n), A073619(n)) for n > 1. - Jonathan Sondow, Jul 10 2012
a(n) = A033286(n) - A152535(n). - Omar E. Pol, Aug 09 2012
For n >= 3, a(n) >= (n-1)^2 * (log(n-1) - 1/2)/2 and a(n) <= n*(n+1)*(log(n) + log(log(n))+ 1)/2. Thus a(n) = n^2 * log(n) / 2 + O(n^2*log(log(n))). It is more precise than in Fares's comment. - Vladimir Shevelev, Aug 01 2013
a(n) = (n^2/2)*(log n + log log n - 3/2 + (log log n - 3)/log n + (2 (log log n)^2 - 14 log log n + 27)/(4 log^2 n) + O((log log n/log n)^3)) [Sinha]. - Charles R Greathouse IV, Jun 11 2015
G.f: (x*b(x))/(1-x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
a(n) = A008472(A002110(n)), for n > 0. - Michel Marcus, Jul 16 2020

Extensions

More terms from Stefan Steinerberger, Apr 11 2006
a(0) = 0 prepended by M. F. Hasler, Mar 05 2014

A014148 a(n) = Sum_{m=1..n} Sum_{k=1..m} prime(k).

Original entry on oeis.org

2, 7, 17, 34, 62, 103, 161, 238, 338, 467, 627, 824, 1062, 1343, 1671, 2052, 2492, 2993, 3561, 4200, 4912, 5703, 6577, 7540, 8600, 9761, 11025, 12396, 13876, 15469, 17189, 19040, 21028, 23155, 25431, 27858, 30442, 33189, 36103, 39190, 42456, 45903
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Apply partial sum operator twice to sequence of primes.
Numbers n such that a(n) is prime are listed in A122381(n) = {1, 2, 3, 6, 10, 23, 31, 46, 55, 58, 66, 70, 82, 91, 118, 131, 151, 163, 182, 187, 198, 199, ...}. Corresponding primes a(n) = a( A122381(n) ) = A122382(n) = {2, 7, 17, 103, 467, 6577, 17189, 61627, 109919, 130531, 198109, 239579, 399557, 559313, ...}. - Alexander Adamchuk, Aug 30 2006
Row 2 in A254858. - Reinhard Zumkeller, Feb 08 2015
Partial sums of A007504, n>=1. - Omar E. Pol, Nov 23 2016

Crossrefs

Programs

  • Haskell
    a014148 n = a014148_list !! (n-1)
    a014148_list = (iterate (scanl1 (+)) a000040_list) !! 2
    -- Reinhard Zumkeller, Feb 08 2015
  • Maple
    b:= proc(n) option remember; `if`(n<1, [0$2],
          (p-> p+[ithprime(n), p[1]])(b(n-1)))
        end:
    a:= n-> b(n+1)[2]:
    seq(a(n), n=1..42);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    Table[Sum[Sum[Prime[k],{k,1,m}],{m,1,n}],{n,1,100}] (* Alexander Adamchuk, Aug 30 2006 *)
    Accumulate[Accumulate[Prime[Range[50]]]] (* Harvey P. Dale, Dec 29 2011 *)

Formula

Convolution of the primes with the positive integers: Sum_{k=1..n} (n-k+1)*prime(k). - David Scambler, Oct 08 2006

Extensions

More terms from Alexander Adamchuk, Aug 30 2006
Name changed by Wesley Ivan Hurt, Oct 04 2021

A014150 Apply partial sum operator thrice to primes.

Original entry on oeis.org

2, 9, 26, 60, 122, 225, 386, 624, 962, 1429, 2056, 2880, 3942, 5285, 6956, 9008, 11500, 14493, 18054, 22254, 27166, 32869, 39446, 46986, 55586, 65347, 76372, 88768, 102644, 118113, 135302, 154342, 175370
Offset: 1

Views

Author

Keywords

Comments

Row 3 in A254858. - Reinhard Zumkeller, Feb 08 2015

Crossrefs

Programs

  • Haskell
    a014150 n = a014150_list !! (n-1)
    a014150_list = (iterate (scanl1 (+)) a000040_list) !! 3
    -- Reinhard Zumkeller, Feb 08 2015
  • Mathematica
    lst={};s1=0;s2=0;s3=0;Do[s1=s1+Prime[n];s2=s2+s1;s3=s3+s2;AppendTo[lst, s3], {n, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 15 2008 *)
    With[{nn=3},Nest[Accumulate[#]&,Prime[Range[50]],nn]] (* Harvey P. Dale, Feb 07 2015 *)

Extensions

Offset fixed by Reinhard Zumkeller, Feb 08 2015

A254858 Iterated partial sums of prime numbers, square array read by diagonals.

Original entry on oeis.org

2, 2, 3, 2, 5, 5, 2, 7, 10, 7, 2, 9, 17, 17, 11, 2, 11, 26, 34, 28, 13, 2, 13, 37, 60, 62, 41, 17, 2, 15, 50, 97, 122, 103, 58, 19, 2, 17, 65, 147, 219, 225, 161, 77, 23, 2, 19, 82, 212, 366, 444, 386, 238, 100, 29, 2, 21, 101, 294, 578, 810, 830, 624, 338, 129, 31
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 08 2015

Keywords

Comments

Row n+1 = partial sums of row n.
T(n,1) = A002522(n+1); T(n,2) = A144396(n+1); T(n,3) = A002522(n+2).

Examples

			. n\k | 1  2  3   4   5    6    7     8     9    10    11     12     13
. ----+------------------------------------------------------------------
.  0  | 2  3  5   7  11   13   17    19    23    29    31     37     41 ..
.  1  | 2  5 10  17  28   41   58    77   100   129   160    197    238 ..
.  2  | 2  7 17  34  62  103  161   238   338   467   627    824   1062 ..
.  3  | 2  9 26  60 122  225  386   624   962  1429  2056   2880   3942 ..
.  4  | 2 11 37  97 219  444  830  1454  2416  3845  5901   8781  12723 ..
.  5  | 2 13 50 147 366  810 1640  3094  5510  9355 15256  24037  36760 ..
.  6  | 2 15 65 212 578 1388 3028  6122 11632 20987 36243  60280  97040 ..
.  7  | 2 17 82 294 872 2260 5288 11410 23042 44029 80272 140552 237592 ...
		

Crossrefs

Cf. A000040 (row 0), A007504 (row 1), A014148 (row 2), A014150 (row 3), A178138 (row 4), A254784 (row 5).
Cf. A007395 (column 1), A144396 (column 2), A002522 (column 3).
Cf. A125180 (antidiagonal sums), A125179 (diagonals downward).

Programs

  • Haskell
    a254858_tabl = diags [] $ iterate (scanl1 (+)) a000040_list where
       diags uss (vs:vss) = (map head wss) : diags (map tail wss) vss
                            where wss = vs : uss
    a254858_list = concat a254858_tabl
  • Mathematica
    nmax = 11;
    row[0] = Prime[Range[nmax+1]];
    row[n_] := row[n] = row[n-1] // Accumulate;
    T[n_, k_] := row[n][[k]];
    Table[T[n-k, k], {n, 0, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 11 2021 *)

A254784 Apply partial sum operator 5 times to primes.

Original entry on oeis.org

2, 13, 50, 147, 366, 810, 1640, 3094, 5510, 9355, 15256, 24037, 36760, 54768, 79732, 113704, 159176, 219141, 297160, 397433, 524872, 685180, 884934, 1131674, 1434000, 1801673, 2245718, 2778531, 3413988, 4167558, 5056430, 6099644, 7318228, 8735337, 10376402
Offset: 1

Views

Author

Harvey P. Dale, Feb 07 2015

Keywords

Comments

Row 5 in A254858. - Reinhard Zumkeller, Feb 08 2015

Crossrefs

Programs

  • Haskell
    a254784 n = a254784_list !! (n-1)
    a254784_list = (iterate (scanl1 (+)) a000040_list) !! 5
    -- Reinhard Zumkeller, Feb 08 2015
  • Mathematica
    With[{nn=5},Nest[Accumulate[#]&,Prime[Range[50]],nn]]

A023538 Convolution of natural numbers with (1, p(1), p(2), ... ), where p(k) is the k-th prime.

Original entry on oeis.org

1, 4, 10, 21, 39, 68, 110, 169, 247, 348, 478, 639, 837, 1076, 1358, 1687, 2069, 2510, 3012, 3581, 4221, 4934, 5726, 6601, 7565, 8626, 9788, 11053, 12425, 13906, 15500, 17221, 19073, 21062, 23190, 25467, 27895, 30480, 33228, 36143, 39231, 42498, 45946, 49585
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k<=n} [(A158611(k+1)) * (A000027(n-k+1))] = Sum_{k<=n} [(A008578(k)) * (A000027(n-k+1))]. [Jaroslav Krizek, Aug 05 2009; Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010]

A293210 a(n) = [x^n] (1/(1 - x)^n)*Sum_{k>=1} prime(k)*x^k.

Original entry on oeis.org

0, 2, 7, 26, 97, 366, 1388, 5288, 20225, 77618, 298766, 1153018, 4460072, 17287558, 67129566, 261095420, 1016994627, 3966529870, 15488964428, 60549061804, 236932924494, 927984726826, 3637661249946, 14270586372348, 56024073085546, 220089137078792, 865154426179408, 3402841810234762, 13391422390407194
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x)^n Sum[Prime[k] x^k, {k, 1, n}], {x, 0, n}], {n, 0, 28}]

Formula

a(n) = A254858(n,n).
Showing 1-7 of 7 results.