cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178205 a(n) = a(n-1) + 10*a(n-3) for n > 2; a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 11, 21, 31, 141, 351, 661, 2071, 5581, 12191, 32901, 88711, 210621, 539631, 1426741, 3532951, 8929261, 23196671, 58526181, 147818791, 379785501, 965047311, 2443235221, 6241090231, 15891563341, 40323915551, 102734817861
Offset: 0

Views

Author

Mark Dols, May 22 2010

Keywords

Comments

If x=a(n), y=a(n+1), z=a(n+2), then 100*x^3 + 10*x^2*z - 30*x*y*z + 10*x*y^2 + 10*y^3 - 2*y*z^2 + y^2*z + z^3 = 10^(n+2), for n >= 0. - Alexander Samokrutov, Jul 03 2015

Crossrefs

Cf. A000930 (a(n)=a(n-1)+a(n-3), a(0)=a(1)=a(2)=1).

Programs

  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + 10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 19 2015
    
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + 10 a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 28}] (* or *)
    CoefficientList[Series[1/(1 - x - 10 x^3), {x, 0, 28}], x] (* Michael De Vlieger, Jul 09 2015 *)
    LinearRecurrence[{1, 0, 10}, {1, 1, 1}, 30] (* Vincenzo Librandi, Jul 19 2015 *)
  • PARI
    {m=29; v=concat([1, 1, 1], vector(m-3)); for(n=4, m, v[n]=v[n-1]+10*v[n-3]); v}
    
  • PARI
    x='x+O('x^50); Vec(1/(1-x-10*x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

G.f.: 1/(1-x-10*x^3).

Extensions

Edited and extended by Klaus Brockhaus, May 23 2010