A178205 a(n) = a(n-1) + 10*a(n-3) for n > 2; a(0) = a(1) = a(2) = 1.
1, 1, 1, 11, 21, 31, 141, 351, 661, 2071, 5581, 12191, 32901, 88711, 210621, 539631, 1426741, 3532951, 8929261, 23196671, 58526181, 147818791, 379785501, 965047311, 2443235221, 6241090231, 15891563341, 40323915551, 102734817861
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,10).
Crossrefs
Cf. A000930 (a(n)=a(n-1)+a(n-3), a(0)=a(1)=a(2)=1).
Programs
-
Magma
I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + 10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 19 2015
-
Mathematica
RecurrenceTable[{a[n] == a[n - 1] + 10 a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 28}] (* or *) CoefficientList[Series[1/(1 - x - 10 x^3), {x, 0, 28}], x] (* Michael De Vlieger, Jul 09 2015 *) LinearRecurrence[{1, 0, 10}, {1, 1, 1}, 30] (* Vincenzo Librandi, Jul 19 2015 *)
-
PARI
{m=29; v=concat([1, 1, 1], vector(m-3)); for(n=4, m, v[n]=v[n-1]+10*v[n-3]); v}
-
PARI
x='x+O('x^50); Vec(1/(1-x-10*x^3)) \\ G. C. Greubel, Apr 29 2017
Formula
G.f.: 1/(1-x-10*x^3).
Extensions
Edited and extended by Klaus Brockhaus, May 23 2010
Comments