cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178218 Numbers of the form 2k^2-2k+1 or 2k^2-1.

Original entry on oeis.org

1, 5, 7, 13, 17, 25, 31, 41, 49, 61, 71, 85, 97, 113, 127, 145, 161, 181, 199, 221, 241, 265, 287, 313, 337, 365, 391, 421, 449, 481, 511, 545, 577, 613, 647, 685, 721, 761, 799, 841, 881, 925, 967, 1013, 1057, 1105, 1151, 1201, 1249
Offset: 1

Views

Author

Eddie Gutierrez, Dec 19 2010

Keywords

Comments

Numbers which when squared are used as entries in magic squares. A sequence of numbers whose difference is an interleaved array consisting of 4,6,8,10,12,... and a second sequence 2,4,6,8,10,... . Each entry when squared produces an entry into a tuple used as the right diagonal in a magic square. The difference between square entries produces a third sequence 24,24,120,120,336,336,720,720,1320,1320,..., numbers divisible by 24 and generating the sequence of natural number squares.

Crossrefs

Programs

  • Magma
    I:=[1, 5, 7, 13]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Jun 09 2012
    
  • Mathematica
    Join[{1}, Flatten[Table[{(n^2 + 1)/2, (n^2 + 2 n - 1)/2}, {n, 3, 50, 2}]]]
    Table[(2 n (n + 2) + 3 (-1)^n + 1)/4, {n, 49}] (* Bruno Berselli, Apr 04 2012 *)
    CoefficientList[Series[(1+3*x-3*x^2+x^3)/((1-x)^3*(1+x)),{x,0,60}],x] (* Vincenzo Librandi, Jun 09 2012 *)
    LinearRecurrence[{2,0,-2,1},{1,5,7,13},60] (* Harvey P. Dale, Jun 09 2019 *)
  • Maxima
    A178218[1]:1$
    A178218[n]:=n*(n+1)-A178218[n-1]$
    makelist(A178218[n],n,1,30); /* Martin Ettl, Nov 01 2012 */
  • Python
    a = 1
    for n in range(2,77):
        print(a, end=",")
        a = n*(n+1) - a
    # Alex Ratushnyak, Aug 03 2012
    

Formula

From Colin Barker, Apr 04 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+3*x-3*x^2+x^3)/((1-x)^3*(1+x)). (End)
a(n) = (2n(n+2)+3(-1)^n+1)/4. - Bruno Berselli, Apr 04 2012
From Philippe Deléham, Jun 08 2012: (Start)
2*a(2n)^2 = a(2n-1)^2 + a(2n+1)^2.
(a(2n)+a(2n-1))*A028242(2n) = (a(2n)+a(2n+1))*A028242(2n+1). (End)
a(1)=1, a(n) = n*(n+1) - a(n-1). - Alex Ratushnyak, Aug 03 2012
E.g.f.: ((x^2 + 3*x + 2)*cosh(x) + (x^2 + 3*x - 1)*sinh(x) - 2)/2. - Stefano Spezia, Feb 22 2024