cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178309 Decimal expansion of sqrt(25277).

Original entry on oeis.org

1, 5, 8, 9, 8, 7, 4, 2, 0, 8, 8, 6, 0, 5, 6, 2, 6, 5, 3, 7, 9, 0, 6, 0, 4, 7, 7, 1, 8, 2, 7, 6, 0, 6, 0, 3, 3, 6, 3, 9, 7, 6, 8, 1, 4, 7, 2, 6, 3, 2, 9, 8, 0, 6, 4, 2, 3, 2, 6, 0, 6, 5, 4, 7, 3, 8, 2, 6, 1, 8, 5, 4, 6, 5, 1, 1, 3, 7, 9, 6, 1, 5, 2, 8, 4, 7, 2, 3, 3, 7, 1, 7, 1, 7, 7, 6, 8, 5, 6, 9, 3, 2, 5, 2, 8
Offset: 3

Views

Author

Klaus Brockhaus, May 24 2010

Keywords

Comments

Continued fraction expansion of sqrt(25277) is 158 followed by (repeat 1, 78, 2, 78, 1, 316).
sqrt(25277) = sqrt(7)*sqrt(23)*sqrt(157).

Examples

			sqrt(25277) = 158.98742088605626537906...
		

Crossrefs

Cf. A010465 (decimal expansion of sqrt(7)), A010479 (decimal expansion of sqrt(23)), A178310 (decimal expansion of sqrt(157)), A178308 (decimal expansion of (111+sqrt(25277))/158).

Programs

  • Mathematica
    RealDigits[Sqrt[25277],10,120][[1]] (* Harvey P. Dale, Oct 12 2011 *)

A010206 Continued fraction for sqrt(157).

Original entry on oeis.org

12, 1, 1, 7, 1, 5, 2, 1, 1, 1, 1, 2, 5, 1, 7, 1, 1, 24, 1, 1, 7, 1, 5, 2, 1, 1, 1, 1, 2, 5, 1, 7, 1, 1, 24, 1, 1, 7, 1, 5, 2, 1, 1, 1, 1, 2, 5, 1, 7, 1, 1, 24, 1, 1, 7, 1, 5, 2, 1, 1, 1, 1, 2, 5, 1, 7, 1, 1, 24, 1, 1, 7, 1, 5, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A041288/A041289 (convergents), A178310 (decimal expansion).

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[157],300] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
    PadRight[{12},120,{24,1,1,7,1,5,2,1,1,1,1,2,5,1,7,1,1}] (* Harvey P. Dale, Jun 06 2021 *)
Showing 1-2 of 2 results.