A178315 E.g.f.: A(x) = sqrt( Sum_{n>=0} 2^(n(n+1)/2) * x^n/n! ).
1, 1, 3, 23, 393, 13729, 943227, 126433847, 33245947857, 17276815511041, 17836691600303283, 36694285316980381463, 150671768689108469724633, 1235972596853128519493249569, 20265064539085026367759911941547, 664309630995695142408442512638430647
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 23*x^3/3! + 393*x^4/4! +... A(x)^2 = 1 + 2*x + 2^3*x^2/2! + 2^6*x^3/3! + 2^10*x^4/4! +...
References
- F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953/54), 143-146.
- F. Harary and E. M. Palmer, On the number of balanced signed graphs, Bulletin of Mathematical Biophysics 29 (1967), 759-765.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..81
- R. Stanley et al., The "square root" of a graph?, MathOverflow, 2021.
- F. Ardila, F. Castillo, Federico, and M. Henley, The arithmetic Tutte polynomials of the classical root systems, Int. Math. Res. Not. IMRN 12 (2015), 3830-3877.
Crossrefs
Column k=2 of A346061.
Programs
-
Maple
a:= n-> n!*coeff(series(add(2^binomial(j+1, 2) *x^j/j!, j=0..n)^(1/2), x, n+1), x, n): seq(a(n), n=0..18); # Alois P. Heinz, Mar 15 2021
-
PARI
{a(n)=n!*polcoeff(sqrt(sum(m=0,n,2^(m*(m+1)/2)*x^m/m!)+x*O(x^n)),n)}
Extensions
Edited by Max Alekseyev, Mar 13 2021
Comments