cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346061 A(n,k) = n! * [x^n] (Sum_{j=0..n} k^(j*(j+1)/2) * x^j/j!)^(1/k) if k>0, A(n,0) = 0^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 7, 23, 1, 0, 1, 1, 13, 199, 393, 1, 0, 1, 1, 21, 901, 17713, 13729, 1, 0, 1, 1, 31, 2861, 249337, 4572529, 943227, 1, 0, 1, 1, 43, 7291, 1900521, 264273961, 3426693463, 126433847, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 03 2021

Keywords

Comments

A(n,k) is odd if k >= 1 or n = 0.

Examples

			Square array A(n,k) begins:
  1, 1,     1,       1,         1,          1, ...
  0, 1,     1,       1,         1,          1, ...
  0, 1,     3,       7,        13,         21, ...
  0, 1,    23,     199,       901,       2861, ...
  0, 1,   393,   17713,    249337,    1900521, ...
  0, 1, 13729, 4572529, 264273961, 6062674201, ...
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A000012, A178315, A178319.
Rows n=0-2 give: A000012, A057427, A002061 (for k>0).
Main diagonal gives A342578.

Programs

  • Maple
    A:= (n, k)-> `if`(k>0, n!*coeff(series(add(k^(j*(j+1)/2)*
                 x^j/j!, j=0..n)^(1/k), x, n+1), x, n), k^n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

E.g.f. of column k>0: (Sum_{j>=0} k^(j*(j+1)/2) * x^j/j!)^(1/k).
E.g.f. of column k=0: 1.
A(n,k) == 1 (mod k*(k-1)) for k >= 2 (see "general conjecture" in A178319 and link to proof by Richard Stanley above).

A178319 E.g.f.: ( Sum_{n>=0} 3^(n*(n + 1)/2) * x^n/n! )^(1/3).

Original entry on oeis.org

1, 1, 7, 199, 17713, 4572529, 3426693463, 7575807034711, 49908659904426337, 983868034228748840161, 58130023275752925902247847, 10299771730830080877230000021479, 5474153833417147528343683843805979793, 8727821227226586439546709016484604992020049
Offset: 0

Views

Author

Paul D. Hanna, May 24 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 199*x^3/3! + 17713*x^4/4! +...
A(x)^3 = 1 + 3*x + 3^3*x^2/2! + 3^6*x^3/3! + 3^10*x^4/4! +...
Let E(x, q) = Sum_{n>=0} q^(n*(n - 1)/2)*x^n/n!, then the coefficients of (x^n/n!) in E(qx, q)^(1/q) begin:
  1;
  1;
  q^2 - q + 1;
  q^5 - 3*q^3 + 5*q^2 - 3*q + 1;
  q^9 - 4*q^6 + q^5 + 15*q^4 - 24*q^3 + 17*q^2 - 6*q + 1;
  q^14 - 5*q^10 + 5*q^9 - 10*q^8 + 30*q^7 - 95*q^5 + 149*q^4 - 110*q^3 + 45*q^2 - 10*q + 1; ...
Setting q = 3 generates this sequence.
		

Crossrefs

Cf. A178315 (sqrt case).
Column k=3 of A346061.

Programs

  • Maple
    a:= n-> n!*coeff(series(add(3^binomial(j+1, 2)
            *x^j/j!, j=0..n)^(1/3), x, n+1), x, n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Mar 15 2021
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,3^(m*(m+1)/2)*x^m/m!+x*O(x^n))^(1/3),n)}

Formula

a(n) = 1 (mod 6) for n >= 0 (conjecture).
General conjecture: [x^n/n!] E(q*x, q)^(1/q) = 1 (mod q(q-1)) for n >= 0 and integer q > 1 where E(x, q) = Sum_{n>=0} q^(n*(n - 1)/2)*x^n/n!.

Extensions

General conjecture restated by Paul D. Hanna, May 25 2010

A342578 a(n) = n! * [x^n] (Sum_{j>=0} n^(j*(j+1)/2) * x^j/j!)^(1/n) for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 3, 199, 249337, 6062674201, 3653786369479951, 65709007885111803731947, 40564683796482484146182142025377, 969773549559254966290998252899999751714721, 999999990999996719397362087568018696141879478712251051, 49037072510879011742983689973641327840345400616866967292640434759551
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2021

Keywords

Comments

All terms are odd.

Crossrefs

Main diagonal of A346061.

Programs

  • Maple
    a:= n-> `if`(n>0, coeff(series(add(n^binomial(j+1, 2)*
             x^j/j!, j=0..n)^(1/n), x, n+1), x, n)*n!, 1):
    seq(a(n), n=0..12);

Formula

a(n) == 1 (mod n*(n-1)) for n >= 2 (see "general conjecture" in A178319 and link to proof by Richard Stanley above).
a(n) ~ n^((n^2 + n - 2)/2). - Vaclav Kotesovec, Jul 15 2021
Showing 1-3 of 3 results.