cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A178337 Numbers k such that (k^3 + 2, n^3 + 4) is a twin prime pair.

Original entry on oeis.org

1, 3, 45, 63, 69, 129, 363, 495, 555, 579, 885, 993, 1053, 1185, 1719, 1839, 2055, 2175, 2199, 2409, 2595, 3039, 3063, 3303, 3399, 3555, 3615, 4245, 4443, 4449, 5073, 5373, 5535, 5703, 5949, 6015, 6075, 6693, 6795, 6849, 7023, 7119, 7155, 7509, 7779, 8535
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 25 2010

Keywords

Comments

With the exception of k = 1, all k are odd multiples of 3 with a least-significant decimal digit of 3, 5 or 9.
A178336(n) gives the values of k^3 + 2.

Examples

			1^3 + 2 = 3 = prime(2) and 3+2 = prime(3) are twin primes, so n=1 is a term.
45^3 + 2 = 91127 = prime(8811) and 91127+2 = prime(8812) are twin primes, so 45 is a term.
10893^3 + 2 = 1292535591959 = prime(48144179941) is a lower twin prime, so 10893 is a term.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..9000] | IsPrime(n^3+2) and IsPrime(n^3+4)]; // Vincenzo Librandi, Nov 18 2010
  • Mathematica
    seqQ[n_] := And @@ PrimeQ[n^3 + 3 + {-1, 1}]; Select[Range[8535], seqQ] (* Amiram Eldar, Jan 11 2020*)

Extensions

Keyword:base removed by R. J. Mathar, Jun 27 2010

A178506 Lesser of a "near cube" twin prime pair (k^3 - 4, k^3 - 2).

Original entry on oeis.org

3371, 8120597, 69426527, 108531329, 176558477, 1207949621, 2379270371, 3477265871, 3560550179, 4227952109, 8012005997, 12665630687, 13060888871, 15832158827, 15945922409, 18337088849, 20279414579, 22354272509, 30283802609, 60559558979, 70496180087, 98035951127
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 29 2010

Keywords

Comments

p + 2 = k^3 - 2 is form of "near(est) cube" prime smaller than cube number k^3, as k^3 - 1 = (k-1) * (k^2 + k + 1), only prime for k=2.

Examples

			p = 3371 = prime(475) = 15^3 - 4, (p, p+2) is twin prime pair tp(90), 3371 is the first term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4]^3 - 4, And @@ PrimeQ[# + {0, 2}] &] (* Amiram Eldar, Dec 25 2019 *)

Extensions

a(13) corrected and more terms from Amiram Eldar, Dec 25 2019

A283698 Numbers k such that {k^2 + 2, k^2 + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.

Original entry on oeis.org

1, 3, 45, 2055, 39033, 48585, 101535, 104553, 112383, 117723, 129315, 152553, 170793, 178095, 234483, 246435, 258093, 272403, 304845, 306885, 365343, 372663, 375813, 405393, 405975, 436425, 456903, 494193, 538965, 551475, 559713, 569805, 570033, 767895, 792903
Offset: 1

Views

Author

K. D. Bajpai, Mar 14 2017

Keywords

Comments

Except a(1), all terms are multiples of 3.
a(n) == {3 or 15} (mod 30) for n>2.

Examples

			a(2) = 3, {3^2 + 2 = 11, 3^2 + 4 = 13 } and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 45, {45^2 + 2 = 2027, 45^2 + 4 = 2029 } and {45^3 + 2 = 91127, 45^3 + 4 = 91129} are twin prime pairs.
		

Crossrefs

Intersection of A086381 and A178337.

Programs

  • Mathematica
    Select[Range[1000000], PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
  • PARI
    for(n=1, 100000, if(isprime(n^2+2) && isprime(n^2+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))

A284014 Numbers k such that {k + 2, k + 4} and {k^2 + 2, k^2 + 4} are both twin prime pairs.

Original entry on oeis.org

1, 3, 15, 57, 147, 2085, 6687, 6957, 11055, 15267, 17385, 17577, 20505, 20637, 23667, 26247, 31077, 31317, 32115, 32967, 34497, 39225, 47775, 52065, 53715, 55335, 56205, 58365, 62187, 63585, 66567, 67215, 70875, 77235, 77475, 82005, 85827, 89595, 89817, 107505
Offset: 1

Views

Author

K. D. Bajpai, Mar 18 2017

Keywords

Comments

After a(1), all the terms are multiples of 3.
After a(2), all the terms are congruent to 5 or 7 (mod 10).

Examples

			a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^2 + 2 = 11, 3^2 + 4 = 13} are twin prime pairs.
a(3) = 15, {15 + 2 = 17, 15 + 4 = 19} and {15^2 + 2 = 227, 15^2 + 4 = 229} are twin prime pairs.
		

Crossrefs

Appears to be the intersection of A086381 and A256388, but that may be unproven.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n+2) and IsPrime(n+4) and IsPrime(n^2+2) and IsPrime(n^2+4)];
    
  • Mathematica
    Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] &]
  • PARI
    for(n=1, 100000,2; if(isprime(n+2) && isprime(n+4) && isprime(n^2+2) &&isprime(n^2+4), print1(n, ", ")))
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A284014 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 (+ n 2))) (= 1 (A010051 (+ n 4))) (= 1 (A010051 (+ (* n n) 2))) (= 1 (A010051 (+ (* n n) 4)))))))
    ;; Antti Karttunen, Apr 15 2017

A284058 Numbers k such that {k + 2, k + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.

Original entry on oeis.org

1, 3, 69, 1719, 3555, 8535, 8625, 9765, 10065, 17955, 27939, 32319, 34209, 35445, 39159, 44769, 47415, 55329, 56235, 75615, 85929, 91965, 96219, 97545, 98895, 122385, 122595, 138075, 142695, 143649, 145719, 152025, 191829, 192975, 197955, 200379, 201819, 202059
Offset: 1

Views

Author

K. D. Bajpai, Mar 19 2017

Keywords

Comments

After a(1), all the terms are multiples of 3.
After a(2), all the terms are congruent to 5 or 9 (mod 10).
a(n) == {9 or 15} (mod 30) for n>2. - Robert G. Wilson v, Mar 19 2017

Examples

			a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 69, {69 + 2 = 71, 69 + 4 = 73} and {69^3 + 2 = 328511, 69^3 + 4 = 328513} are twin prime pairs.
		

Crossrefs

Intersection of A256388 and A178337.

Programs

  • Mathematica
    Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
  • PARI
    for(n=1, 100000,2; if(isprime(n+2) && isprime(n+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))
Showing 1-5 of 5 results.