cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178452 Partial sums of floor(2^n/5).

Original entry on oeis.org

0, 0, 1, 4, 10, 22, 47, 98, 200, 404, 813, 1632, 3270, 6546, 13099, 26206, 52420, 104848, 209705, 419420, 838850, 1677710, 3355431, 6710874, 13421760, 26843532, 53687077, 107374168, 214748350, 429496714, 858993443, 1717986902
Offset: 1

Views

Author

Mircea Merca, Dec 22 2010

Keywords

Comments

Partial sums of A077854(n-3).

Examples

			a(5) = 0 + 0 + 1 + 3 + 6 = 10.
		

Crossrefs

Cf. A077854.

Programs

  • Magma
    [Floor((4*2^n-5*n-3)/10): n in [1..40]]; // Vincenzo Librandi, Jun 23 2011
  • Maple
    seq(round((4*2^n-5*n-4)/10), n=1..50)
  • Mathematica
    CoefficientList[Series[x^2 / ((1 - 2 x) (1 + x^2) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    Accumulate[Floor[2^Range[40]/5]] (* or *) LinearRecurrence[{4,-6,6,-5,2},{0,0,1,4,10},40] (* Harvey P. Dale, Oct 09 2018 *)

Formula

a(n) = round((4*2^n - 5*n - 5)/10).
a(n) = floor((4*2^n - 5*n - 3)/10).
a(n) = ceiling((4*2^n - 5*n - 7)/10).
a(n) = round((4*2^n - 5*n - 4)/10).
a(n) = a(n-4) + 3*2^(n-3) - 2, n > 4.
From Bruno Berselli, Jan 18 2011: (Start)
G.f.: x^3/((1-2*x)*(1+x^2)*(1-x)^2).
a(n) = (4*2^n - 5*n - 5 + A057077(n)*A000034(n))/10.
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-4) - 3*a(n-5) + 2*a(n-6) for n > 6. (End)